Aspects of the search for stable new generation particles in LHC

K. Belotsky (MEPhI)

Prediction of (meta)stable quarks and leptons

Higgs physics in case of 4 generations

See subsequent reports

wrt 3 generations case:

- Higgs is invisible due to H→NN
- Γ(H→gg) increases
- $\Gamma(H \rightarrow \gamma \gamma)$ decreases
- all Γ(H→ff) do not change, so Br(H→ff) are suppressed
- in pp→p(H→bb)p, the changes in Γ(H→gg) and Br(H→bb) are almost compensated.

Cross section of pair production in ATLAS

Efficiency suppression due to muon trigger condition

Expected properties of U(stop)-hadrons: mass spectrum, relative yields

Signature of U(stop)-hadrons in experiment

Conversions of U-hadrons during their propagation through the matter of detectors

$$\Lambda_U^+ o \Lambda_U^+ \qquad \widetilde{\Lambda}_U^- o \widetilde{M}^{0/-} \ M^{0/+} o \Lambda_U^+ \qquad \widetilde{M}^{0/-} o \widetilde{M}^{0/-}$$

U-hadrons transform within a few nuclear lengths into Ubaryons with the charge +.

Anti-U-hadrons transform into mesons, alternating the charge

0←→-.

Common main features: high pt, low velocity (less than speed of light). The measurement of the latter (over time of flight) gives us a mass.

This signature is different from that of Rhadrons (except for R-stop-hadrons)

See report of D. Milstead

Transitions with reduction of baryon number of U-hadron are suppressed.

For anti-U-hadrons:

$$\widetilde{\Lambda}_U^- + N \rightarrow \widetilde{M}^{0/-} + \pi,...$$

$$\tilde{M}^{0/-} + N \leftrightarrow \tilde{M}^{0/-} + N,...$$

 $\rightarrow \tilde{\Lambda}_{U}^{-} + N + N,...$ suppressed

For U-hadrons:

$$\Lambda_U^+ + N \rightarrow M^{0/+} + N + N,...$$
 suppressed

$$M^{0/+} + N \leftrightarrow M^{0/+} + N,...$$

 $\rightarrow \Lambda_U^+ + \pi,...$

For strange U/anti-U-hadrons:

$$\left\{ \widetilde{U}\widetilde{s}\,\widetilde{q} \right\}^{+/0} \to \widetilde{M}^{0/-} \qquad \left\{ U\widetilde{s} \right\}^{+} \to \Lambda_{U}^{+}$$

$$\{Usq\}^{+/0} \longrightarrow \Lambda_U^+ \qquad \qquad \left\{\widetilde{U}s\right\}^+ \longrightarrow \widetilde{M}^{0/-}$$

Kinematic distributions of U- and stop-quarks have subtle differences, showing themselves at large statistics. E.g., two hypotheses can be discriminated over a width of pseudorapidity distribution at integral intensity $>\sim 100$ fb⁻¹.

U-hadrons vs stop-hadrons

Conclusion

- Model of stable new generation particles may have distinct experimental features (i) connected with Higgs physics, (ii) accounted for by specifics of new hadron family.
- Discrimination of competing hypotheses of U- and stopquarks existence over kinematic distributions requires a refined analysis and, likely, large statistic taking.
 Accompanying SUSY effects (such as gluino production) may be of crucial importance.

Back up

Comments about Tevatron constraint on mass of stop and U

