New ALICE Beam Pipe: Injection Protection

C. Bracco on Behalf of ABT/BTP
Acknowledgment: M. Giovannozzi
Outlines

• Reminder
• Assumptions
• Aperture and beam envelope:
 – Nominal injection
 – Grazing event (MKI failure)
• Conclusions
• The protection elements must always be set to an aperture $a_{prot} < n_1$.

• For secondary collimators the condition $a_{sec} < a_{prot}$ must always be satisfied.

• The primary collimators must be the closest element to the beam and $a_{prim} < a_{sec}$ has to be valid. Primary collimators do not have to intercept the beam core (3σ)!!
To protect the LHC aperture at injection (bottleneck in the arc) and respect the collimation hierarchy:

- LHC injection protection collimators (TDI, TCLIA and TCLIB) are at 6.8 σ
- TCDI (in the TL) are at 4.5 – 5 σ

• The protection elements must always be located inside the aperture.

• For secondary collimators the condition \(a_{\text{prim}} < a_{\text{sec}} \) has to be valid. Primary collimators are always at the beam core (3 σ)!!
Alice aperture: results - I

\[n_1 (\sigma) \]

Distance from IP (m)

- Beam 1 - Nominal - Inj
- Beam 1 - After LS2 - Inj
- Beam 1 - After LS2 Rev 2 - Inj

\(\beta^* = 10 \text{ m} \)
\(\theta_{\text{ext}} = 170 \mu \text{rad} \)
\(\text{Sep} = 2 \text{ mm} \)

Ok!...check MKI grazing failure..

Minimum aperture = 13 \(\sigma \)
(bottleneck in the arc)

4 \(\sigma \) bottleneck in the experiment

Minimum aperture = 13 \(\sigma \)
(bottleneck in the arc)
MKI Failures

- **Injected batch**
- **Circulating LHC beam**
- **Miss-kicked Injected batch**
- **Grazing**
- **Kicked Circ. beam**
- **Over-kicked inj. batch**

Injected beam:

- **Nominal kick**
- **No kick**
- **¾ kick**
- **Grazing**

Reminder

90% MKI strength

10% MKI strength

Most critical
Assumptions

- Only MKI failures are considered: Only vertical plane
- Normalised emittance of 3.5 mm mrad also for postLS2 case
- Optics for protons (minimum n1): $\beta^* = 10$ m, crossing angle = 170 μrad, separation =2 mm
- Beam envelope: $6.8 \sigma_\beta$ (what can go through TCDIs and TDI)
- Aperture: Mech.aperture$^* - Mech.tol.* - Orbit** - Disp.offset
 * Data from ALICE and Massimo
 ** 3 mm *sqrt(β/max(β))
 ** Dy*3e-4
Aperture and Beam Envelope PreLS2

Nominal kick

TDI

TDI
Aperture and Beam Envelope PostLS2

Nominal kick

TDI

TDI
Grazing Event

- Nominal MKI kick
- TDI
- Nominal MKI kick
- TDI

grazing (10% MKI kick)
Conclusions

• The new proposed aperture fulfills the n1 requirements of collimation hierarchy: bottleneck kept in the arc and $> 7.5 \sigma$
• No direct beam impact on the new aperture is expected also in case of the most critical MKI failure (grazing event)
• Recommendation: calculate energy deposition induced by secondary showers in case of grazing event.