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Alignment Validation

LHC Alignment Workshop – September 05 2006

● Introduction & Overview
● Mass resonances: J/, , Z
● Resolution Effects
● Degenerate Modes
● Monitoring
● Validation with MC
● Summary

Tobias Golling on behalf of
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Outline

● All 4 experiments have roughly the same ideas for alignment
validation

● Much is in common – there are some experiment-dependent
peculiarities

● All: Much work to do for the validation of the alignment

➔ I will present the general ideas, using examples (incomplete)
from the LHC but also from the Tevatron or the SLAC experiments

➔ At the end I will be more specific about the differences
between ALICE, ATLAS, CMS and LHCb
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Why Validate?
● The residual based alignment has limitations:
A 1-dimensional measure is used to determine 6 DoF per module
(underconstrained) – this leads to more than one solution
➔ Physics is biased

➔ Validate to detect “wrong solutions”

Go one step further: Validation ⇒ Constraint
➔ Use as alignment correction, make alignment more robust
however, then we cannot use it anymore to monitor

Rule of thumb:
● “Practical constraint” ⇒ feed back into alignment algorithm as
   additional constraint (straightforward in global algorithms)
● Else: use as monitor
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More Reasons for Validation
● Alignment monitoring sensitive to all kinds of
  (other) problems: tracking, reconstruction,...

● We only need to align what has an impact on physics
  ⇒ Invert the argument:
  If all physics observables look as expected then we have good
  reason to believe that our detector is sufficiently aligned

● Goal for Day 1: working tracking reconstruction!
  It's always easy to blame alignment – be prepared for this!
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Possible Handles
● Tracks correlating different modules, not from beamspot

➔ Cosmics ⇒ Barrel, off-axis tracks (can reconstruct?), “two arms”
  muon trigger, ATLAS: ~40Hz through Inner Detector, ~1Hz through Pixel

    Caveats: Illumination not uniform / low statistics / low momentum
➔ Halo muons ⇒ Endcap
➔ Beam-gas, Caveat: low momentum (E

CM
=113GeV)

➔ Parasitic collisions at 0.9TeV
Rate, trigger? - ATLAS: Minbias scintillating trigger

Alignment algorithms more robust
if parameter matrix well populated
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Possible Handles cont'd
● Standard candles: J/, , Z,...

➔ Mass resolution probes pT resolution
  Caveat: Measure only convolution of material description,
  B-field uncertainty, misalignments ⇒ Disentangle!
  Rate, trigger?

● Overlap hits in the same layer: residual
outer

 - residual
inner

➔ Not affected by misalignments elsewhere in the detector
➔ Errors on residual

outer/inner
 are highly correlated and subtract out

➔ Less sensitive to MS, use lower pT and higher track density
➔ Circumference constraint
Caveats: Low statistics
Usually used already in alignment algorithm

● Use redundancy of detectors: E/p, eta-phi match between
  tracking and calorimetry

● Alignment monitoring:
➔ Lifetime, mass, residuals vs. eta, phi, pT, charge, module position,...
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Possible Handles cont'd
●  Biased track parameters can probe some degenerate modes
   e.g. IP distribution, charge asymmetries,...

● Vertex constraint: common vertex for a group of tracks

● Compare track-based alignment with survey and hardware alignment
➔ Survey & hardware based alignment doesn't have the problem of
  “wrong solutions”

● Magnet-off data can eliminate some “wrong solutions”
  Caveat: turning B-field on and off changes the geometry,
               no pT measurement



Disentangle E-loss, B-field, Misalignments
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● Use mass resonances: J/, ,Z
  decaying to µ+µ-

● Plot m(µ+µ-) vs pT
● At low pT sensitive to E-loss
● B-field effect independent of pT
● At high pT more sensitive to
  misalignments

Procedure:
● First fix material budget to make mass ~independent of pT
● Iterative process, also cross check with conversions
● Residual discrepancy attributed to B-field scale (or misalignment)
● Handle: magnetic field effect independent of charge, alignment effect
  charge dependent ⇒ Look for charge asymmetry of muons

● Run alignment with magnet off data
● Small global corrections expected with magnet on
● Residual effects due to B-field or material



J/ and Z Mass
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Z mass

J/ mass

● Probe at different scales: J/, Z
● Z important for validation of muon
  alignment

M2 = 2P
1
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100x
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J/ and  accessible by Trigger?

● J/ rate from B decay?
⇒ Lower threshold using vertex 
    and invariant mass cut

● J/ and  are “barrel-poor”

4 GeV trigger threshold possible
at low luminosity?

⇒ Use high cross section
resonances

Also K
s
 in Minbias?

Scale down by 100x
for 0.9TeV run



Mass Resolution vs. Momentum Resolution
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B
s
→π+K-

●  Mass resolution is a good measure of the
  momentum resolution

4x

worse

● Momentum resolution sensitive
to both B-field inhomogeneities
& misalignments

         B known with 
         uncertainty < 0.03%
⇒ momentum resolution
    affected by < 10%
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Weakly Defined Degrees of Freedom
● Alignment algorithms based on minimization of track residuals suffer from
a class of detector deformations (degenerate modes or 2 invariant 
deformations) that alter the shape of tracks in such a way that they are still 
helical but with certain properties of the helix modified:
biased track parameters – physics is biased

● Even if tracks with different momenta and sign charge are used

● The barrels are left progressively rotated/translated proportional to
ar2 + br + c

● Deformations typically of the same size as the initial random 
misalignments

● Low momentum tracks (~< 2 GeV) less affected
  Caveat: Multiple scattering
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Rphi Rotation
Quadratic term

Constant term

Barrels are progressively rotated as you 
move away from the beam-line

Pixel

Silicon 
Strip
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X / Y Translation & Rotation
Quadratic term

X / Y Translation:
Barrels are progressively translated as 
you move away from the beam-line

X / Y Rotation:
Barrels are progressively 
rotated as you move away 
from the beam-line
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Z Translation

Telescoping (only linear term):
● Projection of high momentum helical tracks onto RZ plane is straight line
● Z misalignments that grow linearly with z keep the tracks as straight lines
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Deformations are stable vs. Iterations

Pixel

Silicon 
Strip

Pixel

Silicon 
Strip
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Methods for Removing RPhi Mode

Observable: Bias of pT and IP distribution

Quadratic term:
● bias on curvature
● Opposite bias for positively and negatively charged tracks

➔ E/p
➔ Known charge-symmetric distributions

Constant term:
● related to transverse impact parameter
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Charge Dependence
● Opposite bias for negative and positive
  particles

● Mismeasurement of ~7GeV at 50 GeV
  for misalignment of 0.5mrad at 50cm

● Charge flip at ~1 TeV

For charge-symmetric pT distribution:
plot (pos-neg)/(pos+neg) vs. pT
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Charge Dependence
Black: ideal geometry
Red: Rphi rotated geometry

2 and the Z-mass are hardly
affected by this misalignment:
M2 = 2P

1
P

2
(1-cos

12
)

PT distribution of µ+ and µ- 
sensitive to this misalignment

Red: -   
Blue: + 
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E/p - Quadratic Term

Calorimeter calibration:
Only require that E/p distribution is the 
same for + and – particles when no 
misalignments are present

40 GeV electrons
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Impact Parameter - Constant Term
Perfect alignment: mean impact 
parameter expected to be zero

Rphi rotation: mean IP non-zero

If beamspot is offset:
Use profile histogram: Mean IP vs. Phi

Beamspot offset and angle determined
from amplitude and phase

Fit sin plus average IP (offset in y-axis)
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Result of Sagitta Removal for RPhi
Using E/p and the impact paramter:
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X / Y Translations & Rotations
PT and IP bias varies with eta and phi, e.g.

X / Y translation

X / Y rotation

Remark: Very weak sensitivity to
linear term of X /Y translation
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More Generic High Frequency Modes

Detailed study in global 2 algorithm:
● Vertex constraint
● Track parameter constraint
● Invariant mass constraint
● Constraint on the geometry / 
   on the mode itself

Weak modes corresponding to low part of eigen-spectrum:

➔ Constraints easily implemented
  in algorithm (same for Millepede)

➔ Very encouraging results to
  constrain these modes
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Degenerate Modes at LHCb or Endcaps
● LHCb is an endcap kind of detector

● VELO Alignment run by run, since 
  detector moves between runs (3cm)

● Degenerate modes determined in
  Step 2

Step 0

Misaligned VELO

Step 1

Internallyaligned VELO
Millepede applied on single tracks 

in the four parts

Step 2

Aligned VELO
Align the 4 parts using vertex 
constraints, overlap tracks,...
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Parasitic Collisions
At 0.9TeV beams have no crossing angles, LHCb is displaced
⇒ Head-on collisions at LHCb require parasitic collisions at ALICE, ATLAS 
and CMS, which can be tuned to occur between 3.75m and 11.25m away 
from the interaction point, and vice verca

O(10%) of the collisions will be parasitic at a luminosity ratio of
~50% for 11.25m and ~90% for 3.75m

Tracks from the ±3.75m points will make it into the tracking detector
without crossing a lot of material

These tracks impose a different set of constraints than tracks from the IP
⇒ add to alignment or use as cross-check

Needs more study:
● Possible to trigger on these events – first ATLAS study suggests that 

Minbias scintillating trigger would work
● Effect of timing shift – events occur late by half a nominal beam 

crossing
● pattern recognition / track fitting
● Needs simulation study



Alignment Monitoring
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Use monitoring to assess 
the need for alignment

Decide whether to update 
alignment constants: 
human intervention

Jan31 data
with old
alignment

Jan31 data
with new
alignment



Alignment Monitoring cont'd
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● Histograms on hit, cluster and track level

● Comparison with reference distributions

● Fit to expected modes: look for indications of degenerate modes

● Semi-automatic, human intervention needed in case of discrepancy
(user-friendly GUI)

● Pixel example:
Pattern of residual vs. row and column number can give information about

➔ residual module rotations and translations 
➔ module bow and other distortions (Babar)

● xy position of primary vertex (mean and sigma) as a function of z,
separately for silicon and TRT (CDF)

● µ-pair miss distance (David Brown)

...



Comparison of SCT & TRT Parameters

● rphi residual as function of z

Corresponds to a relative twist of SCT and TRT of 0.2 mrad
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ATLAS SCT-TRT cosmics run:

∆r (TRT-SCT)
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Match Subdetectors in  and 

Twist: ∆  varies with  

Calorimeter and tracker for electrons:

Do same for 
track

 – 
cluster

 as a function of 

Barrel + Barrel –

 

e.g. 
track

 – 
cluster

 as a function of :



Alignment Validation with MC
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● See talk by David Brown yesterday

● Generate a “matrix” of all typical realistic misalignment sets

● Each represents a degenerate mode (e.g. Telescoping, RPhi rotation,...),
  random misalignments, or other pathologies, etc.

● Apply alignment algorithm and check to what extend the misalignments
  can be recovered

● This gives an estimate of the expected systematic uncertainties

● Tough to cover all possible misalignments
  Only data can tell: Be prepared for surprises...



Summary
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● Central physics
● Cannot use E/p

● Forward physics
● No cosmics
  (acceptance)

● High pT physics, a lot of material
● Alignment mainly with magnet on data
● Do not reverse polarity
● Large magnetic field

● Soft physics, very little material
● Alignment mainly 
  with magnet off data
● Reverse polarity
● Small magnetic field



Summary
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Use all possible handles:

● Various topologies: cosmics, halo muons, beam gas, parasitics
● Overlap hits
● Use redundancy of different subdetectors: -match, E/p
● Vertex and mass constraints:  J/, , Z
● Resolutions: mass and IP
● Low level residual and alignment distributions
● Other external constraints: Survey, hardware alignment,...

If possible add handle as additional constraint in alignment
algorithm

Else: Monitoring, quick turnaround, semi-automatic
including human intervention

Test against expected misalignment scenarios in MC
Be prepared for the unexpected!



Back-Up
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J/ and  are “Barrel poor”
J/  distribution for two different triggers

  distribution for two different triggers
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Remove Z Translation (Telescoping)

No pT bias but  bias (Caveat:  distribution not known at LHC),
can use forward-backward symmetry?

Modules are tilted in RPhi and RZ -> hits in same barrel have different 
radius -> Some sensitivity to telescoping (but need high statistics)

Needs more studies


