

Alignment Validation

Tobias Golling on behalf of

- Introduction & Overview
- Mass resonances: J/Ψ , Y, Z
- Resolution Effects
- Degenerate Modes
- Monitoring
- Validation with MC
- Summary

LHC Alignment Workshop – September 05 2006

Tobias Golling

Outline

- All 4 experiments have roughly the same ideas for alignment validation
- Much is in common there are some experiment-dependent peculiarities
- All: Much work to do for the validation of the alignment
- → I will present the general ideas, using examples (incomplete) from the LHC but also from the Tevatron or the SLAC experiments
- At the end I will be more specific about the differences between ALICE, ATLAS, CMS and LHCb

Why Validate?

 The residual based alignment has limitations:
 A 1-dimensional measure is used to determine 6 DoF per module (underconstrained) – this leads to more than one solution
 Physics is biased

> Validate to detect "wrong solutions"

Go one step further: Validation ⇒ Constraint → Use as alignment correction, make alignment more robust however, then we cannot use it anymore to monitor

Rule of thumb:

- "Practical constraint" ⇒ feed back into alignment algorithm as additional constraint (straightforward in global algorithms)
- Else: use as monitor

More Reasons for Validation

- Alignment monitoring sensitive to all kinds of (other) problems: tracking, reconstruction,...
- We only need to align what has an impact on physics
 ⇒ Invert the argument:

 If all physics observables look as expected then we have good reason to believe that our detector is sufficiently aligned
- Goal for Day 1: working tracking reconstruction! It's always easy to blame alignment – be prepared for this!

Possible Handles

- Tracks correlating different modules, not from beamspot
 - → Cosmics ⇒ Barrel, off-axis tracks (can reconstruct?), "two arms" muon trigger, ATLAS: ~40Hz through Inner Detector, ~1Hz through Pixel Caveats: Illumination not uniform / low statistics / low momentum
 - → Halo muons \Rightarrow Endcap
 - → Beam-gas, Caveat: low momentum (E_{CM}=113GeV)
 - → Parasitic collisions at 0.9TeV

Rate, trigger? - ATLAS: Minbias scintillating trigger

Alignment algorithms more robust if parameter matrix well populated

Possible Handles cont'd

• Standard candles: J/Ψ , Y, Z,...

→ Mass resolution probes pT resolution
 Caveat: Measure only convolution of material description,
 B-field uncertainty, misalignments ⇒ Disentangle!
 Rate, trigger?

- Overlap hits in the same layer: residual outer residual
 - Not affected by misalignments elsewhere in the detector
 - Frors on residual are highly correlated and subtract out
 - → Less sensitive to MS, use lower pT and higher track density
 - Circumference constraint

Caveats: Low statistics

Usually used already in alignment algorithm

- Use redundancy of detectors: E/p, eta-phi match between tracking and calorimetry
- Alignment monitoring:
 - → Lifetime, mass, residuals vs. eta, phi, pT, charge, module position,...

Possible Handles cont'd

- Biased track parameters can probe some degenerate modes e.g. IP distribution, charge asymmetries,...
- Vertex constraint: common vertex for a group of tracks
- Compare track-based alignment with survey and hardware alignment
 Survey & hardware based alignment doesn't have the problem of "wrong solutions"
- Magnet-off data can eliminate some "wrong solutions" Caveat: turning B-field on and off changes the geometry, no pT measurement

Disentangle E-loss, B-field, Misalignments

Procedure:

- p_T of J/ ψ [GeV/c] • First fix material budget to make mass ~independent of pT
- Iterative process, also cross check with conversions
- Residual discrepancy attributed to B-field scale (or misalignment)
- Handle: magnetic field effect independent of charge, alignment effect charge dependent ⇒ Look for charge asymmetry of muons

Small global corrections expected with magnet on

• Residual effects due to B-field or material

J/ Ψ and Z Mass

Tobias Golling

J/Ψ and Y accessible by Trigger?

Mass Resolution vs. Momentum Resolution

Weakly Defined Degrees of Freedom

• Alignment algorithms based on minimization of track residuals suffer from a class of detector deformations (degenerate modes or x^2 invariant deformations) that alter the shape of tracks in such a way that they are still helical but with certain properties of the helix modified: biased track parameters – physics is biased

- Even if tracks with different momenta and sign charge are used
- \bullet The barrels are left progressively rotated/translated proportional to ar^2 + br + c
- Deformations typically of the same size as the initial random misalignments
- Low momentum tracks (~< 2 GeV) less affected Caveat: Multiple scattering

Rphi Rotation

X / Y Translation & Rotation

X / Y Translation: Barrels are progressively translated as you move away from the beam-line

the ATLAS Experiment

X / Y Rotation: Barrels are progressively rotated as you move away from the beam-line

Z Translation

<u>Telescoping (only linear term):</u>

- Projection of high momentum helical tracks onto RZ plane is straight line
- Z misalignments that grow linearly with z keep the tracks as straight lines

Tobias Golling

Deformations are stable vs. Iterations

BERKELEY

Methods for Removing RPhi Mode

Observable: Bias of pT and IP distribution

Quadratic term:

- bias on curvature
- Opposite bias for positively and negatively charged tracks
 - → E/p
 - Known charge-symmetric distributions

Constant term:

related to transverse impact parameter

Charge Dependence

Charge Dependence

Black: ideal geometry Red: Rphi rotated geometry

 χ^2 and the Z-mass are hardly affected by this misalignment: $M^2 = 2P_1P_2(1-\cos\theta_{12})$

PT distribution of μ^+ and μ^- sensitive to this misalignment

E/p - Quadratic Term

<u>Calorimeter calibration:</u> Only require that E/p distribution is the same for + and – particles when no misalignments are present

0.015

Impact Parameter - Constant Term

Result of Sagitta Removal for RPhi

Using E/p and the impact paramter:

X / Y Translations & Rotations

PT and IP bias varies with eta and phi, e.g.

X / Y translation

Remark: Very weak sensitivity to linear term of X /Y translation

X / Y rotation

More Generic High Frequency Modes

Weak modes corresponding to low part of eigen-spectrum:

600

400

200

0

-200

-400

-600

600

400

200

mode 9

Detailed study in global x^2 algorithm:

- Vertex constraint
- Track parameter constraint
- Invariant mass constraint
- Constraint on the geometry / on the mode itself

- Constraints easily implemented in algorithm (same for Millepede)
- Very encouraging results to constrain these modes

-500

Degenerate Modes at LHCb or Endcaps

Tobias Golling

Parasitic Collisions

At 0.9TeV beams have no crossing angles, LHCb is displaced \Rightarrow Head-on collisions at LHCb require parasitic collisions at ALICE, ATLAS and CMS, which can be tuned to occur between 3.75m and 11.25m away from the interaction point, and vice verca

O(10%) of the collisions will be parasitic at a luminosity ratio of \sim 50% for 11.25m and \sim 90% for 3.75m

Tracks from the ± 3.75 m points will make it into the tracking detector without crossing a lot of material

These tracks impose a different set of constraints than tracks from the IP \Rightarrow add to alignment or use as cross-check

Needs more study:

- Possible to trigger on these events first ATLAS study suggests that Minbias scintillating trigger would work
- Effect of timing shift events occur late by half a nominal beam crossing
- pattern recognition / track fitting
- Needs simulation study

Alignment Monitoring

Alignment Monitoring cont'd

- Histograms on hit, cluster and track level
- Comparison with reference distributions
- Fit to expected modes: look for indications of degenerate modes
- Semi-automatic, human intervention needed in case of discrepancy (user-friendly GUI)
- Pixel example:

Pattern of residual vs. row and column number can give information about

- residual module rotations and translations
- module bow and other distortions (Babar)
- xy position of primary vertex (mean and sigma) as a function of z, separately for silicon and TRT (CDF)
- µ-pair miss distance (David Brown)

Comparison of SCT & TRT Parameters

ATLAS SCT-TRT cosmics run:

trt rphi - sct rphi rphi residual versus z χ^2/ndf **** **p**0 phi residual [mm] 50 70 350 0.0001867±0.0000180 p1 300 rphi residual as function of z 250 200 -0.3 150 -0.4 100 -0.5 50 -0.6 Ο .2 -800 -600 -400 -200 200 400 600 0 $\Delta r \phi$ (TRT-SCT) z (at cylinder surface) [mm]

Corresponds to a relative twist of SCT and TRT of 0.2 mrad

800

32.82 / 13

-0.4302 ±0.0060

Match Subdetectors in η and ϕ

Calorimeter and tracker for electrons:

Alignment Validation with MC

- See talk by David Brown yesterday
- Generate a "matrix" of all typical realistic misalignment sets
- Each represents a degenerate mode (e.g. Telescoping, RPhi rotation,...), random misalignments, or other pathologies, etc.
- Apply alignment algorithm and check to what extend the misalignments can be recovered
- This gives an estimate of the expected systematic uncertainties
- Tough to cover all possible misalignments Only data can tell: Be prepared for surprises...

Summary

- Central physics
- Cannot use E/p

- Forward physics
- No cosmics (acceptance)

- Soft physics, very little material
- Alignment mainly with magnet off data
- Reverse polarity
- Small magnetic field

- High pT physics, a lot of material
- Alignment mainly with magnet on data
- Do not reverse polarity
- Large magnetic field

Summary

Use all possible handles:

- Various topologies: cosmics, halo muons, beam gas, parasitics
- Overlap hits
- Use redundancy of different subdetectors: $\eta\phi$ -match, E/p
- Vertex and mass constraints: J/Ψ , Y, Z
- Resolutions: mass and IP
- Low level residual and alignment distributions
- Other external constraints: Survey, hardware alignment,...

If possible add handle as additional constraint in alignment algorithm

Else: Monitoring, quick turnaround, semi-automatic including human intervention

Test against expected misalignment scenarios in MC Be prepared for the unexpected!

Back-Up

J/Y and Y are "Barrel poor"

Figure 9.35: The η distribution of J/ψ s with both muons triggered by the "Open Level-1" and Level-2 trigger combination (solid-line histogram) as compared with the more stringent Level-1 and Level-2 trigger (shaded histogram). Two opposite-sign Level-1 or 2 opposite-sign Level-2 candidates are required. See text for details.

$Y \eta$ distribution for two different triggers

Figure 9.37: The η distribution of Υ s with both muons triggered by the Open Level-1 and Level-2 trigger (solid-line histogram) as compared with the Level-1 and Level-2 trigger (shaded histogram). Two opposite-sign Level-1 or 2 opposite-sign Level-2 candidates are required.

Tobias Golling

J/ $\Psi \eta$ distribution for two different triggers

Remove Z Translation (Telescoping)

No pT bias but η bias (Caveat: η distribution not known at LHC), can use forward-backward symmetry?

Modules are tilted in RPhi and RZ -> hits in same barrel have different radius -> Some sensitivity to telescoping (but need high statistics)

Needs more studies

