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Alignment Validation

Tobias Golling on behalf of

.

* Introduction & Overview

* Mass resonances: }/YV, Y, Z
* Resolution Effects

* Degenerate Modes

* Monitoring

* Validation with MC

s Summary

LHC Alignment Workshop — September 05 2006
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* All 4 experiments have roughly the same ideas for alignment
validation

* Much is in common - there are some experiment-dependent
peculiarities

e All: Much work to do for the validation of the alignment
> | will present the general ideas, using examples (incomplete)
from the LHC but also from the Tevatron or the SLAC experiments

> At the end | will be more specific about the differences
between ALICE, ATLAS, CMS and LHCDb
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Why Validate?

* The residual based alignment has limitations:
A 1-dimensional measure is used to determine 6 DoF per module

(underconstrained) — this leads to more than one solution
> Physics is biased

> Validate to detect “wrong solutions”

Go one step further: Validation = Constraint

> Use as alignment correction, make alignment more robust
however, then we cannot use it anymore to monitor

Rule of thumb:
e “Practical constraint” = feed back into alignment algorithm as

additional constraint (straightforward in global algorithms)
* Else: use as monitor
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More Reasons for Validation

* Alignment monitoring sensitive to all kinds of
(other) problems: tracking, reconstruction,...

* We only need to align what has an impact on physics
= |nvert the argument:
If all physics observables look as expected then we have good
reason to believe that our detector is sufficiently aligned

e Goal for Day 1: working tracking reconstruction!
It's always easy to blame alignment — be prepared for this!

Tobias Golling Page 4 reeen)

@ the ATLAS Experiment f‘



Possible Handles

* Tracks correlating different modules, not from beamspot
> Cosmics = Barrel, off-axis tracks (can reconstruct?), “two arms”

muon trigger, ATLAS: ~40Hz through Inner Detector, ~1Hz through Pixel
Caveats: lllumination not uniform / low statistics / low momentum

> Halo muons = Endcap
> Beam-gas, Caveat: low momentum (E_ =113GeV)

> Parasitic collisions at 0.9TeV
Rate, trigger? - ATLAS: Minbias scintillating trigger

Global coefficients matrix
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Alignment algorithms more robust

if parameter matrix well populated 0 ° o by
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Possible Handles cont'd

e Standard candles: J/Y, Y, Z,...
> Mass resolution probes pT resolution
Caveat: Measure only convolution of material description,
B-field uncertainty, misalignments = Disentangle!
Rate, trigger?

e Overlap hits in the same layer: residual - residual

> Not affected by misalignments elsewhere in the detector
> Errors on residual are highly correlated and subtract out

outer/inner

> Less sensitive to MS, use lower pT and higher track density
> Circumference constraint

Caveats: Low statistics

Usually used already in alignment algorithm

* Use redundancy of detectors: E/p, eta-phi match between
tracking and calorimetry

* Alignment monitoring:
> Lifetime, mass, residuals vs. eta, phi, pT, charge, module position,...
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Possible Handles cont'd

 Biased track parameters can probe some degenerate modes
e.q. IP distribution, charge asymmetries,...

* Vertex constraint: common vertex for a group of tracks

» Compare track-based alignment with survey and hardware alignment
> Survey & hardware based alignment doesn't have the problem of
“wrong solutions”

* Magnet-off data can eliminate some “wrong solutions”
Caveat: turning B-field on and off changes the geometry,
no pT measurement

. ) i i reeeend]
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Disentangle E-loss, B-field, Misalignments

3105

 Use mass resonances: J/¥, Y,Z
decaying to u

* Plot m(u*) vs pT

* At low pT sensitive to E-loss

* B-field effect independent of pT = 2 S030¢

3100F

3085

'w) [MeV/c']

e

Dbttt i s - slope
. [MeV/c’]/[GeVic]
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* At high pT more sensitive to E 3085 Mwith B-fieldcor.  -0.026+ 0.058
misalignments : . E-loss with layer 0.049+ 0.043
3080} * default E-loss 0.298+ 0.043
E ® no corrections 0.904+t 0.043
219 Fas] ol ST (N TR S S S N
Procedure: 0 5 10

 First fix material budget to make mass ~independent of pT Pt of J/w [GeVic]

* [terative process, also cross check with conversions

* Residual discrepancy attributed to B-field scale (or misalignment)

* Handle: magnetic field effect independent of charge, alignment effect
charge dependent = Look for charge asymmetry of muons

* Run alignment with magnet off data
* Small global corrections expected with magnet on
* Residual effects due to B-field or material

LHCD
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Miscalibrated Momentum Scale, Z Events

* Probe at different scales: J/¥, Z - ]
e Z important for validation of muon o £ Mass e
alignment sl , ]
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Percentage Error on Momentum

M? = 2P P_(1-coso.)

Al o | P> P(l+«x), x = dP/P
" (M+dM)? = 2P P (1+)*(1-cose, )
T & | dM/M ~x =dP/P=dB/B
oo oo With P = 0.3 B(T) p(m)
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J/Y and Y accessible by Trigger?

Di-lepton Cross Sections for Vector Mesons
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 J/¥ rate from B decay?
= Lower threshold using vertex

Lepton Threshold (GeV)

4 GeV trigger threshold possible
at low luminosity?

= Use high cross section
resonances

Also Ks in Minbias?

10°

10' L

do/dPtu(pb/GeV)
=

do/dPt for Muon From b Decay

—09TeV [
o ]
— 14Tev ||

Scale down by 100x
for 0.9TeV run

and invariant mass cut vﬁ
\ |
e J/¥ and Y are “barrel-poor” . \ 1 J
Pt{GeV)
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Mass Resolution vs. Momentum Resolution
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Weakly Defined Degrees of Freedom

e Alignment algorithms based on minimization of track residuals suffer from
a class of detector deformations (degenerate modes or x? invariant
deformations) that alter the shape of tracks in such a way that they are still
helical but with certain properties of the helix modified:

biased track parameters — physics is biased

e Even if tracks with different momenta and sign charge are used

* The barrels are left progressively rotated/translated proportional to
ar + br + c

* Deformations typically of the same size as the initial random
misalignments

e L ow momentum tracks (~< 2 GeV) less affected
Caveat: Multiple scattering
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Rphi Rotation

Quadratic term e

F-a-""-_______q"m
Barrels are progressively rotated as you / f’_j:_:'"“\
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X /Y Translation & Rotation

o ——
X /Y Translation: ST \
Barrels are progressively translated as ,:;//* \\ \-..
you move away from the beam-line f.“( 23\ ‘~| | ”|
\\=/ ) S
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20 X / Y Rotation:

B . Barrels are progressively
10 .- . rotated as you move away
from the beam-line

T B0 -0 -0 20 0 20 40 60 80 100 120
Bameal offset (microns)
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Z Translation

Telescoping (only linear term):
* Projection of high momentum helical tracks onto RZ plane is straight line
» Z misalignments that grow linearly with z keep the tracks as straight lines

Bamel radius {cm}

10

o D sl Eraion

ﬁ
T

PRGN P Ak I TN RGN A R A N e N T SO A NN e R Wk T -

-20 0 20 40 =T 20 100
Ba rrel offsat (micrans)
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Deform

ations are stable vs. Iterations
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Methods for Removing RPhi Mode

Observable: Bias of pT and IP distribution

Quadratic term:

* bias on curvature

* Opposite bias for positively and negatively charged tracks
> E/p
> Known charge-symmetric distributions

Constant term:
* related to transverse impact parameter

3 Jﬁg‘:;*)r . .
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Measured pt (GeV), Gamma Hindson Mode of +0.5 mR

-50 -

harge Dependence

_______ // | particles

Measured pt (GeV), Correctly Aligned

-0_5_:..

For charge-symmetric pT distribution:

plot (pos-neg)/(pos+neqg) vs. pT 1
0 10000 20000 30000 40000 50000 60000

e Charge flip at ~1 TeV

* Opposite bias for negative and positive

e Mismeasurement of ~7GeV at 50 GeV
for misalignment of 0.5mrad at 50cm

51 EE — u

Fractional Difference «
lﬂ
P—-—ﬂé
——
—

Ptin MeV
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Charge Dependence

Entries 393926
Mean 91.21

% 04 RMS 396 Black: ideal geometry
foss Red: Rphi rotated geometry
."Eéo.oa

X? and the Z-mass are hardly
affected by this misalignment:
M? = 2P P (1-cos0_)

0.005
S s R TS (S T
m2[GeV]
P, of antimuon from 2 Enirlas. FET8
- Mean 39.6
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E 0.1_—
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g B Blue: u*
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sensitive to this misalignment e
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E/p - Quadratic Term

Calorimeter calibration:

Only require that E/p distribution is the
same for + and - particles when no

misalignments are present
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Impact Parameter - Constant Term

Perfect alignment: mean impact [ Signed impact parameter (cm) - N
parameter expected to be zero e
, , migt__umy
Rphi rotation: mean IP non-zero [ WEsagiE ]
e SR
Impact Par Profile 2004 L]
Hant= 18508 Bras N [ TELE i T
0.3 | Mean = 3100 by 0005 001 0015 002
~ | BMS = L#19
Under= 0
02 Cvar= 0
- integ = 01341
Seal- If beamspot is offset:
8 Use profile histogram: Mean IP vs. Phi
TR | | -
ok
E .
01 Beamspot offset and angle determined
from amplitude and phase
0.2
P | g BRI . Fit sin plus average IP (offset in y-axis)
L] 1 G
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InitlalyFinal Barrel Rotations

(]

Bérral radivs {om)

Result of Sagitta Removal for RPhi

Using E/p and the impact paramter:

+ Inihal off=st

O O fat afer
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B Final off=t

-0 -0z 02 -0k -0 0.05

. s | . .
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X /Y Translations & Rotations

PT and IP bias varies with eta and phi, e.q.

X /Y translation

EoverP (+ve) vs phi |

14—

will3
Eniriem 1804
M#an 244
RS 180
el FEETY -1
Frob 0. iR
pi 0 o L O60C B
pi OO 2 OO 2

X /Y rotation

Entries 6530

18

Me=an x ERRL
“gn‘l 00238
ANS x 18035

T W g 1.05 ME
0.95
Remark: Very weak sensitivity to 0.9
linear term of X /Y translation pos
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More Generic High Frequency Modes

Weak modes corresponding to low part of eigen-spectrum:
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Detailed study in global x* algorithm:

200 |

e Vertex constraint

 Track parameter constraint

* |[nvariant mass constraint
 Constraint on the geometry /
on the mode itself
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> Very encouraging results to
constrain these modes

> Constraints easily implemented
in algorithm (same for Millepede)
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Degenerate Modes at LHCb or Endcaps

* LHCb is an endcap kind of detector ‘ ‘ ‘ ‘ SHEARING
* VELO Alignment run by run, since ‘ ‘ ‘ ‘ ‘ ‘ } ‘ ‘
detector moves between runs (3cm)
* Degenerate modes determined in SCALING
Step 2 HHH HHH
, - C - 11111
LHCb ;
Step 1 Step 2
Step 0 , .
mmm) | [nternally-aligned VELO | e Aligned VELO
Misaligned VELO . . . _ |
Millepede applied on single tracks Align the 4 parts using vertex
in the four parts constraints, overlap tracks,...

5 — . .
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Parasitic Collisions

At 0.9TeV beams have no crossing angles, LHCD is displaced
= Head-on collisions at LHCb require parasitic collisions at ALICE, ATLAS

and CMS, which can be tuned to occur between 3.75m and 11.25m away
from the interaction point, and vice verca

0O(10%) of the collisions will be parasitic at a luminosity ratio of
~50% for 11.25m and ~90% for 3.75m

Tracks from the £3.75m points will make it into the tracking detector
without crossing a lot of material

These tracks impose a different set of constraints than tracks from the IP
= add to alignment or use as cross-check

Needs more study:
* Possible to trigger on these events - first ATLAS study suggests that
Minbias scintillating trigger would work
* Effect of timing shift — events occur late by half a nominal beam
crossing
e pattern recognition / track fitting
* Needs simulation study

> = : : ceen®
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Alignment Monitoring

od, (um) vs ¢ 1 I ndf 500.4/95 5z, (um) vs ¢ % 1 ndf 781.1/97

Prob 0 Prob 0
Frerrrprrr it r T e const <1.523+ 0,158 qoFTTrTrTrrrrrr Tt [T t 0.6225+ 0.3488
Jan31 data | :
- amp2 2.63+0.22 - amp 1.8%2 + 0.50
Wlth Old 1“_— ”‘H ::115;2 zgzigg: 31.'!:— } phase 2429+ IE.EBB
i r phaseé 1.9351 0.098 L H
alignment . H |

20(]
10%
of

+ W % |

0

[»

A

Use monitoring to assess _wf
the need for alignment :

Decide whether to update

H od, (um) vs ¢ WL 5z, (um) vs 2 =
alignment constants: | = ] | |
human intervention ’ oas | 20
= 15
8
- 10

Jan31 data .}
with new -
alignment ~
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Alignment Monitoring cont'd

* Histograms on hit, cluster and track level

 Comparison with reference distributions

* Fit to expected modes: look for indications of degenerate modes

* Semi-automatic, human intervention needed in case of discrepancy

(user-friendly GUI)

* Pixel example:

Pattern of residual vs. row and column number can give information about
> residual module rotations and translations
> module bow and other distortions (Babar)

e Xy position of primary vertex (mean and sigma) as a function of z,
separately for silicon and TRT (CDF)

* U-pair miss distance (David Brown)

> i) i i ceeeen®]
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Comparison of SCT & TRT Parameters

ATLAS SCT-TRT cosmics run:

| rphi residual versus z
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o
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e rphi residual asfunction of z
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Corresponds to a relative twist of SCT and TRT of 0.2 mrad
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Match Subdetectors in n and ¢

Calorimeter and tracker for electrons:

e.g. ¢

track

- ¢

cluster

as a function of ¢:

0.01

0.008
0.005

0.004

0.002

"I"._Barrd-l- = D.D1_ LI B

0.008

0.006

1 0004

Do same for n,..

Twist: A¢ varies with n

1

cluster

as a function of ¢
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Alignment Validation with MC

* See talk by David Brown yesterday
* Generate a “matrix” of all typical realistic misalignment sets

 Each represents a degenerate mode (e.g. Telescoping, RPhi rotation,...),
random misalignments, or other pathologies, etc.

* Apply alignment algorithm and check to what extend the misalignments
can be recovered

* This gives an estimate of the expected systematic uncertainties

* Tough to cover all possible misalignments
Only data can tell: Be prepared for surprises...

> i) i i ceeeen®]
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* Central physics
e Cannot use E/p * Soft physics, very little material

* Alignment mainly
with magnet off data

* Reverse polarity

* Small magnetic field

* Forward physics
vy * No cosmics
(acceptance)

* High pT physics, a lot of material

e Alignment mainly with magnet on data
* Do not reverse polarity

* Large magnetic field

. Iz : : ceen®
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Use all possible handles:

* Various topologies: cosmics, halo muons, beam gas, parasitics
* Overlap hits

e Use redundancy of different subdetectors: n¢p-match, E/p

e Vertex and mass constraints: J/¥, Y, Z

* Resolutions: mass and IP

* Low level residual and alignment distributions

* Other external constraints: Survey, hardware alignment,...

If possible add handle as additional constraint in alignment
algorithm

Else: Monitoring, quick turnaround, semi-automatic
including human intervention

Test against expected misalignment scenarios in MC
Be prepared for the unexpected!
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Back-Up
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J/Y and Y are “Barrel poor”

Open histogram 252 events

r 24
=
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J/I¥ n distribution for two different triggers
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Figure 9,35 The y distribution of J/s with both muons triggered by the "Open Level-1"
and Level-2 trigger combination (solid-line histogram) as compared with the more stringent
Level-1 and Level-2 trigger (shaded histogram). Two opposite-sign Level-1 or 2 opposite- 180 e T T T T T T T T
sign Level-2 candidates are required. See text for details.
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20

Y n distribution for two different triggers

Figure 9.37: The 5 distribution of Ts with both muons triggered by the Open Level-1 and
Level-2 trigger (solid-line histogram) as compared with the Level-1 and Level-2 tngger
{shaded histogram). Two opposite-sign Level-1 or 2 opposite-sign Level-2 candidates are
required.
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Remove Z Translation (Telescoping)

No pT bias but n bias (Caveat: n distribution not known at LHC),
can use forward-backward symmetry?

Modules are tilted in RPhi and RZ -> hits in same barrel have different
radius -> Some sensitivity to telescoping (but need high statistics)

Needs more studies
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