LHC machine plans

Mike Lamont
Mixed Bag

- Single beam operations in 2007 (and 2008)
- Details of 450 GeV running in 2007
- Machine Parameters (if already known)
- Collision to single-beam operation ratio for 450 GeV

- Knowledge of size and absolute position of beam spot from machine in 2007 (and 2008 - if different)

- Machine Background Simulation/conditions in 2007 (and 2008 startup)
- Expected beam gas interactions and beam halo muon/hadron rates in 2007 (and 2008)
- Are there already plans to provide machine background simulation for 450 GeV running in 2007?

- Can the experiment dipole magnet switched on to full field?
- Can the LHC-b VELO be closed at all with no squeezed beam, aperture 5mm with magnet on?
CALIBRATION RUN - 2007

Minimum Hardware Commissioning of Sector 1-2 & 2-3 and Machine check-out
Beams at 450 GeV/c
<table>
<thead>
<tr>
<th>Month</th>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oct</td>
<td>Operations testing</td>
</tr>
</tbody>
</table>
| Nov | Full Machine Checkout
 (Access, Vacuum, Equipment Tests, Cycle and Set, BIC and INB)
 Beam Commissioning to 450GeV
 16 days estimated, 60% efficiency assumed |
| Dec | Engineering run (Collisions at 450GeV + Ramp Commissioning) |

- **End 2007**
- **05.09.06 Machine plans - Alignment workshop 4**
- ** Shutdown**
 - Hardware Commissioning 450GeV
 - Engineering Run 450GeV
 - Calibration run 450GeV
 - Machine checkout 450GeV
 - Beam commissioning 450GeV
Aims:

- Commission essential safety systems
- Commission essential beam instrumentation
- Commission essential hardware systems
- Perform beam based measurements to check:
 - Polarities
 - Aperture
 - Field characteristics
- Establish collisions
- Provide stable two beam operations
- Interleave with further machine development, in particular, the ramp.

Should provide a firm platform for eventual commissioning to 7 TeV and provide lead time for problem resolution.
Beam

- **Pilot Beam**
 - Single bunch, 5 to 10 x 10^9 protons
 - Possibly reduced emittance

- **Pilot++**
 - Single bunch 3 to 4 x 10^{10} protons

- **4, 12 bunches etc. pushing towards...**

- **43,156 bunches**
 - 3 to 4 x 10^{10} ppb

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Bunches</th>
<th>Bunch Intensity $[10^{10} \text{p}]$</th>
<th>Total Intensity $[10^{14} \text{p}]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>One pilot bunch</td>
<td>1</td>
<td>0.5</td>
<td>0.00005</td>
</tr>
<tr>
<td>10 nominal bunches</td>
<td>10</td>
<td>10.0</td>
<td>0.01000</td>
</tr>
<tr>
<td>Scenario 43 bunches</td>
<td>43</td>
<td>4.0</td>
<td>0.01700</td>
</tr>
<tr>
<td>Scenario I: 156 bunches</td>
<td>156</td>
<td>4.0</td>
<td>0.06200</td>
</tr>
<tr>
<td>Scenario II: 156 bunches</td>
<td>156</td>
<td>10.0</td>
<td>0.15600</td>
</tr>
<tr>
<td>Scenario 75 ns</td>
<td>936</td>
<td>4.0</td>
<td>0.37000</td>
</tr>
<tr>
<td>Scenario I: 25 ns</td>
<td>2808</td>
<td>4.0</td>
<td>1.10000</td>
</tr>
<tr>
<td>Scenario II: 25 ns</td>
<td>2808</td>
<td>5.0</td>
<td>1.40000</td>
</tr>
<tr>
<td>Nominal 25 ns</td>
<td>2808</td>
<td>11.5</td>
<td>3.20000</td>
</tr>
</tbody>
</table>
Phases

<table>
<thead>
<tr>
<th>Phase</th>
<th>Main Objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>First turn</td>
</tr>
<tr>
<td>2</td>
<td>Establish circulating beam</td>
</tr>
<tr>
<td>3</td>
<td>450 GeV - initial</td>
</tr>
<tr>
<td>4a</td>
<td>450 GeV - measurements</td>
</tr>
<tr>
<td>4b</td>
<td>450 GeV - system commissioning</td>
</tr>
<tr>
<td>5a</td>
<td>Two beam operations</td>
</tr>
<tr>
<td>5b</td>
<td>Collisions</td>
</tr>
<tr>
<td>6</td>
<td>Increase intensity</td>
</tr>
</tbody>
</table>

End TI2, TI8, injection, BPMs, BLMs, thread first turn, polarity check,
Closed orbit, chromaticity, energy matching, tune,
RF, control & correction, transverse diagnostics, linear optics checks, BLMs, beam dump, machine protection,
Beta beating, aperture, field quality checks, transfer functions,
RF, transverse feedback, BLMs to MPS, tune PLL, collimators and absorbers,
Parallel injection, separation bumps, instrumentation and control,
Establish collisions, luminosity monitors, collimation, solenoids,
Collimators, LFB, multi-batch injection
Time

<table>
<thead>
<tr>
<th>Phase</th>
<th>Beam time [days]</th>
<th>Beam</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 First turn</td>
<td>4</td>
<td>1 x Pilot</td>
</tr>
<tr>
<td>2 Establish circulating beam</td>
<td>3</td>
<td>1 x Pilot</td>
</tr>
<tr>
<td>3 450 GeV – initial</td>
<td>3</td>
<td>1 x Pilot++</td>
</tr>
<tr>
<td>4a 450 GeV - consolidation</td>
<td>1-2</td>
<td>1 x Pilot++</td>
</tr>
<tr>
<td>4b 450 GeV – system commissioning</td>
<td>2-3</td>
<td>1 x Pilot++</td>
</tr>
<tr>
<td>5a 2 beam operations</td>
<td>1</td>
<td>2 x Pilot++</td>
</tr>
<tr>
<td>5b Collisions</td>
<td>1-2</td>
<td>2 x Pilot++</td>
</tr>
<tr>
<td></td>
<td>16 days</td>
<td></td>
</tr>
</tbody>
</table>

Given an operational efficiency of 60%, this gives an elapsed time of about 26 days.

Some opportunities for parallel development and parasitic studies.
Calibration Run 2007

- **6 weeks beam time**

- **3 weeks beam commissioning**
 - Essentially single beam, low intensity for the most part

- **3 weeks collisions**
 - Low intensities initially, with staged increase to an optimistic $156 \times 4 \times 10^{10}$
 - Interleafed with low intensity single beam MD
 - ramp to 1.1 TeV etc
Machine Configuration

- **Optics:**
 - $\beta^* = 11$ m in IR 1 & 5, $\beta^* = 10$ m in IR 2 & 8
 - Triplet aperture

- **Crossing angles off**
 - 1, 12, 43, 156 bunches per beam

- **Separation bumps - two beam operation**

- **Shift bunches for LHCb**
 - 4 out of 43 bunches, or 24 bunches out of 156

- **Solenoids & Exp. Dipoles etc. off (to start with)**
450 GeV - Performance

<table>
<thead>
<tr>
<th></th>
<th>Reasonable</th>
<th>All out max</th>
</tr>
</thead>
<tbody>
<tr>
<td>k_b</td>
<td>43</td>
<td>156</td>
</tr>
<tr>
<td>$i_b \cdot 10^{10}$</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>β^* (m)</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>intensity per beam</td>
<td>$8.6 \cdot 10^{11}$</td>
<td>$1.6 \cdot 10^{13}$</td>
</tr>
<tr>
<td>beam energy (MJ)</td>
<td>.06</td>
<td>1.1</td>
</tr>
<tr>
<td>luminosity</td>
<td>10^{28}</td>
<td>$3 \cdot 10^{30}$</td>
</tr>
<tr>
<td>event rate 1(kHz)</td>
<td>0.4</td>
<td>64</td>
</tr>
<tr>
<td>W rate 2 (per 24h)</td>
<td>0.5</td>
<td>70</td>
</tr>
<tr>
<td>Z rate 3 (per 24h)</td>
<td>0.05</td>
<td>7</td>
</tr>
</tbody>
</table>

Several days

1. Assuming 450GeV inelastic cross section $\rightarrow 40mb$
2. Assuming 450GeV cross section $W \rightarrow l\nu$ $\rightarrow 1nb$
3. Assuming 450GeV cross section $Z \rightarrow ll$ $\rightarrow 100pb$
450 GeV Beam Spot - Longitudinal

- RMS bunch length at 7 TeV = 7.55 cm, 16 MV

- Nominal 450 GeV
 - RMS bunch length = 11.24 cm
 - RF voltage = 8 MV

- For coast will raise voltage at 450 GeV to 16 MV – increase deltap/p and shorten bunch length
 - deltap/p (2σ) 0.88E-3 to ~1.1E-3 with concomitant decrease in bunch length
Beam spot – transverse

- **Bigger beams at 450 GeV**
 - 290 µm at $\beta^* = 11$ m.
 - 277 µm at $\beta^* = 10$ m.

- **2 challenges:**
 - Colliding the beams – should be able to get them within 150 µm using BPMs
 - Orbit stability

- **Vertex position**
 - Transverse: 1 mm run-to-run, 3 mm long term
 - Absolute position: approx. ± 400 µm from BPMs

Transverse beam size from one of: Synchrotron Light Monitor, Rest Gas Monitor or Wire Scanner plus optics measurements
Background

beam gas interactions and beam halo muon/hadron rates

• Residual gas within experiments
 - Baked out – low rates
• Residual gas in LSSs
• Gas pressure in adjacent cold sectors
 - Relative high pressures, elastic scattering

• Inefficiency of cleaning in IR7 & IR3

See: M Huhtinen, V. Talanov, G. Corti et al
The 450 GeV run will be stage 0.

No conditioning, minimal pump-down time in some sectors. Static vacuum.

Vacuum life time shall be larger than 35 h and 50 h for 2007 and 2008 respectively.
LSSs

• The base line is still:
 - bake-out of the experiments vacuum chambers
 - bake-out of the rest of the LSS: the maximum will be done.

• In the special case of missing time resources, components at the start of year 1 operation, it might be done with the following priorities:
 - A) LSS 1,2,5,8
 - B) LSS 4
 - C) LSS 3,6,7

• All the LSS will be baked for year 2 of operation.
LSS – no bakeout

- No bake-out - no NEG activation
- Static vacuum (thermal desorption)
- Residual gas dominated by H₂O
- System requires several weeks of pump-down
- Stage 1 conditions: pressure of the order 10⁻⁸ Torr
- Stage 0 – could be higher – reduced pumping time

Potentially useful background source

- Gas pressure in adjacent cold sectors
 - tertiary collimators not foreseen…

Vadim Talanov & team plan detailed studies, given scenario of collimator operation at the 450 GeV start-up, along with loss maps.
Halo

- Scrape in the SPS, collimate in the transfer lines
- Expect halo generation from
 - RF noise
 - Intra Beam Scattering
 - Optics mismatch
 - Beam-gas
 - Poor parameter control (tune, chromaticity), poor lifetime, stream particles to aperture limit
- Nominally this is cleaned by the collimation system with the resulting tertiary halo potentially finding its way to the experiments insertion – and the tertiary collimators
450 GeV - collimators

- Lower intensity, lower energy, reduced demands
- Bigger beams
- Un-squeezed
- Aperture limitation is the arcs, in particular DS
450 GeV: Collimation I

• With low beam intensity:
 - Primary collimators: 6σ
 - Secondary collimators: out
 - Tertiary collimators: out
 - Absorbers: out
 - TCDQ: 10σ
 - TDI: out

![Graph showing available vertical aperture with 7.5 σ and warm marks]
450 GeV: Collimation II

• With an optimistic beam intensity we might see:
 - Primary collimators: 5.7σ
 - Secondary collimators at 6.7σ
 - Tertiary collimators: out
 - Absorbers: out
 - TCDQ: 9σ
 - TDI: 6.8σ

Un-squeezed – tertiary collimators out – aperture limit in the arcs – would expect low halo losses in IRs
450 GeV – spectrometer magnets

- ALICE – no problems
- LHCb
 - with the crossing angle off, full field should be OK – both polarities
 - VELO to 5 mm…

ACTION: The AB-ABP group will estimate the maximum spectrometer bump amplitudes and minimum vertex detector opening that are compatible with the beta* = 11m and beta* = 6m and beta* = 17m optics options at 450 GeV.

Results to the LHC Commissioning working group in 2-3 weeks
2008
Staged commissioning plan for protons@7TeV

2008

- **Stage I**
 - Hardware commissioning 7TeV
 - Machine checkout 7TeV
 - Beam commissioning 7TeV
 - 43 bunch operation
 - 75ns ops

- **II**
 - 25ns ops I

- **III**
 - Shutdown

2009

- **Shutdown**
 - Machine checkout 7TeV
 - Beam setup
 - 25ns ops I

- **III**
 - Install Phase II and MKB

Timeline

- **No beam**
 - 2008
 - 2009

- **Beam**
 - 2008
 - 2009
<table>
<thead>
<tr>
<th>Month</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>8-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan</td>
<td></td>
<td></td>
<td></td>
<td>19 K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Powering tests</td>
<td></td>
<td></td>
<td>magnet commissioning</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shutdown</td>
<td></td>
<td></td>
<td>cold down</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>propylene</td>
<td></td>
<td></td>
<td>standby</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Recool down</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Machine check out</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Setting up with beam</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>May</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jun</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jul</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aug</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sep</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Run</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hardware commissioning to 7 TeV

Machine Checkout

Commissioning with beam

Physics
Full commissioning

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Rings</th>
<th>Total [days] both rings</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Injection and first turn</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>Circulating beam</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>450 GeV - initial</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>450 GeV - detailed</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>450 GeV - two beams</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>Snapback - single beam</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>Ramp - single beam</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>Ramp - both beams</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>7 TeV - setup for physics</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>Physics un-squeezed</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>TOTAL to first collisions</td>
<td></td>
<td>45</td>
</tr>
<tr>
<td>11</td>
<td>Commission squeeze</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>12</td>
<td>Increase Intensity</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>13</td>
<td>Set-up physics - partially squeezed.</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>14</td>
<td>Pilot physics run</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Should benefit from 450 GeV run
Usual stuff

First turn
- Commission injection region
- Instrumentation
- Threading

Establish circulating beam
- Circulating low intensity beam

450 GeV Initial
- Polarities and aperture checked.
- Basic optics checks performed.
- First pass commissioning of BI performed.
- Phase 1 of machine protection system commissioning performed.
- Beam Dump commissioned with beam

450 GeV Detailed
- Well-adjusted beam parameters, detailed optics checks
- Fully functioning beam instrumentation.
- Machine protection as required for ramp
- RF - beam control loops operational and adjusted

Two beam operation
- 2 beams, well-adjusted beam parameters, beam instrumentation, cross talk etc.

Switch to nominal
- 2 beams, well-adjusted beam parameters, beam instrumentation, cross talk etc.

Snapback
- Single beam, good transmission through snapback
- Requisite measurements (orbit, tune, chromaticity)

Ramp Single Beam
- Single beam, good transmission to top energy
- Commission beam dump in ramp
- Stops in ramp - measurements
- RF

Two beams to top energy
- Two beams, good transmission to top energy
- Measurements

Squeeze
- Single beam - step through squeeze
- Parameter control, measurements

05.09.06 Machine plans - Alignment workshop
7 TeV commissioning

- **Around 2 months elapsed time to establish first collisions**
 - Mostly pilot++, low intensity, single beam, alternate rings
 - No crossing angle
 - No squeeze $\beta^* = 17 - 10 - 17 - 10$ m.

- **Stage 1 vacuum conditions**
 - Experiments & LSSs should be baked out
 - Other LSSs potentially not
 - See LHC project note 783

- **Collimation during initial commissioning**
 - Minimal collimation scheme under discussion, probably primary & secondary with no tertiary/absorbers
 - Again expect low halo loss in experiments

- **First collisions**
 - Pilot++
 - Un-squeezed

- **Pilot physics**
<table>
<thead>
<tr>
<th>Sub-phase</th>
<th>Bunches</th>
<th>Bun. Int.</th>
<th>beta*</th>
<th>Luminosity</th>
<th>Time</th>
<th>Int lumi</th>
</tr>
</thead>
<tbody>
<tr>
<td>first Collisions</td>
<td>1 x 1</td>
<td>2 x 10^{10}</td>
<td>18 m</td>
<td>4 x 10^{27}</td>
<td>12 hours</td>
<td>0.15 nb^{-1}</td>
</tr>
<tr>
<td>repeat ramp - same conditions</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2 days @ 50%</td>
<td>0.3 nb^{-1}</td>
</tr>
<tr>
<td>multi-bunch at injection & through ramp - collimation</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2 days</td>
<td>-</td>
</tr>
<tr>
<td>physics</td>
<td>12 x 12</td>
<td>3 x 10^{10}</td>
<td>18 m</td>
<td>1 x 10^{29}</td>
<td>2 days @ 50%</td>
<td>8 nb^{-1}</td>
</tr>
<tr>
<td>physics</td>
<td>43 x 43</td>
<td>3 x 10^{10}</td>
<td>18 m</td>
<td>3.8 x 10^{29}</td>
<td>2 days @ 50%</td>
<td>30 nb^{-1}</td>
</tr>
<tr>
<td>commission squeeze – single beam then two beams, IR1, IR5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2 days</td>
<td>-</td>
</tr>
<tr>
<td>measurements squeezed</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2 day</td>
<td>-</td>
</tr>
<tr>
<td>physics</td>
<td>43 x 43</td>
<td>3 x 10^{10}</td>
<td>10 m</td>
<td>7 x 10^{29}</td>
<td>3 days - 6 hr t.a. - 70% eff.</td>
<td>75 nb^{-1}</td>
</tr>
<tr>
<td>commission squeeze to 2m collimation etc.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3 days</td>
<td>-</td>
</tr>
<tr>
<td>physics</td>
<td>43 x 43</td>
<td>3 x 10^{10}</td>
<td>2 m</td>
<td>3.4 x 10^{30}</td>
<td>3 days - 6 hr t.a. - 70% eff.</td>
<td>0.36 pb^{-1}</td>
</tr>
<tr>
<td>commission 156 x 156</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1 day</td>
<td>-</td>
</tr>
<tr>
<td>physics</td>
<td>156 x 156</td>
<td>2 x 10^{10}</td>
<td>2 m</td>
<td>5.5 x 10^{30}</td>
<td>2 days - 6 hr t.a. - 70% eff.</td>
<td>0.39 pb^{-1}</td>
</tr>
<tr>
<td>physics</td>
<td>156 x 156</td>
<td>3 x 10^{10}</td>
<td>2 m</td>
<td>1.2 x 10^{31}</td>
<td>5 days - 5 hr t.a. - 70% eff.</td>
<td>2.3 pb^{-1}</td>
</tr>
</tbody>
</table>

29 days total
Background

Detailed studies exist...

Nice summary talk by G. Corti and V. Talanov at this year’s Chamonix

See also LMIBWG:
 cern.ch/lhc-background

Lot of work going on in the collimation team

Loss Maps at 450 GeV & 7 TeV

REFERENCES

Results for 0.01 A [43 x 1.15 10^{11}] and conditions described in LPR 783

<table>
<thead>
<tr>
<th>Hadrons</th>
<th>Muons</th>
</tr>
</thead>
<tbody>
<tr>
<td>$I = I_n$</td>
<td>$I = I_n$</td>
</tr>
<tr>
<td>1.57×10^8</td>
<td>2.66×10^8</td>
</tr>
<tr>
<td>~ 0.6</td>
<td>~ 760</td>
</tr>
</tbody>
</table>

Table 2: Particle fluxes [particles/s] at the machine start-up with two different values for the current, but without tertiary collimators.

Figure 2: Flux of hadrons and muons [particles/s per element of SS1] as a function of primary interaction distance to the IP1 for the machine start-up with and without collimators in IR1.
Conclusions

- **450 GeV calibration run**
 - 3 weeks single beam machine commissioning
 - Low beam current but potentially interesting vacuum conditions
 - Minimal collimation scheme
 - 3 weeks collisions with the hope to push over 10^{29} cm$^{-2}$s$^{-1}$
 - Detailed BG studies planned

- **7 TeV**
 - 6 weeks single/two beam machine commissioning
 - Low beam current but potentially interesting vacuum conditions
 - Un-squeezed initially, with minimal collimation
 - Detailed BG studies already performed and on-going