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Introduction

❏ Global alignment without having to solve a large system of linear

equations

❏ Recursive approach, based on Kalman filter equations

❏ Update after each track

❏ Update is not restricted to modules crossed by the track

❏ Update is limited to modules with significant correlations

❏ Some bookkeeping required
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Introduction

❏ Easy to use prior information form mechanical or laser alignment

❏ Easy to fix the position of reference detectors

❏ Method suitable for alignment relative to another detector

❏ Stil in the experimental phase
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Sequential Updating

❏ Notation for alignment related objects:

N total number of alignable detector units (modules)

dt vector of true alignment parameters

d0 expansion point of alignment parameters

d current estimate of alignment parameters

di subvector of alignment parameters of detector unit i

D covariance matrix of d

Dij submatrix of cross-correlations between

detector units i and j

d̂ updated estimate of alignment parameters

D̂ covariance matrix of d̂
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Sequential Updating

❏ Notation for track related objects:

I list of modules crossed by the current track

k size of I

m observations of the current track

V covariance matrix of m

xt true track parameters of the current track

x0 expansion point of track model

x predicted track parameters of the current track

C covariance matrix of x

x̂ updated track parameters of the current track
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Sequential Updating

❏ The observations m depend on the track parameters xt via the

track model f :

m = f(xt) + ε, cov(ε) = V

❏ ε contains the effects of the observation error and of multiple

scattering. Energy loss is considered as deterministic and is

included in the track model.

❏ Its variance-covariance matrix V can be assumed to be known.

❏ A preliminary track fit gives a provisional estimate x of the track

parameters. The actual estimates of the alignment parameters

are used at this stage.
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Sequential Updating

❏ The observations also depend on the alignment parameters dt.

❏ The track model is extended accordingly:

m = f(xt,dt) + ε, cov(ε) = V

❏ First-order Taylor expansion at expansion points d0 and x0:

m = c + Adt + Bxt + ε = c +
(
A B

)(dt

xt

)
+ ε

❏ Jacobians:

A = ∂m/∂dt

∣∣
d0
, B = ∂m/∂xt

∣∣
x0
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Sequential Updating

❏ Constant:

c = f(x0,d0) − Ad0 − Bx0

❏ Expansion point d0: the nominal or the currently estimated

module alignment.

❏ Expansion point x0: result of a preliminary track fit.

❏ The Kalman filter requires a prediction x of the track parameters,

along with its variance-covariance matrix C.

❏ The prediction has to be stochastically independent of the

observations in the track.
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Sequential Updating

❏ First case: independent prediction exists

✧ External prediction from already aligned detector

✧ External information form vertex or kinematical constraint

❏ Update equation of the Kalman filter:(
d̂

x̂

)
=
(

d

x

)
+ K (m − c − Ad − Bx)
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Sequential Updating

❏ Gain matrix of the filter:

K =
(

D 0
0 C

)(
AT

BT

)(
V + ADAT + BCBT

)−1︸ ︷︷ ︸
G

=
(

DATG

CBTG

)
❏ Update decomposes:

d̂ = d + DATG (m − c − Ad − Bx)

x̂ = x + CBTG (m − c − Ad − Bx)
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Sequential Updating

❏ Case two: no independent prediction exists

❏ The prediction x0 gets zero weight in order not to bias the

estimation

❏ Multiply C by a scale factor α and let α tend to infinity:

G = lim
α−→∞

(
V + ADAT + αBCBT

)−1

= V −1
D − V −1

D B(BTV −1
D B)−1BTV −1

D

with

VD = V + ADAT
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Sequential Updating

❏ Because of GB = 0 the update equation of the alignment

parameters can be simplified to

d̂ = d + DATG (m − c − Ad)

❏ The update of the covariance matrix can be calculated by linear

error propagation:

D̂ =
(
I − DATGA

)
D
(
I − ATGAD

)
+ DATGV GAD

❏ Both terms on the right hand side are positive definite, so the

left hand side is guaranteed to be positive definite as well.
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Sequential Updating

❏ The iteration needs starting values.

❏ Mechanical and laser alignment can be used for the starting

values.

❏ Reference units can be fixed by giving them very small initial

errors.
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Implementation and computational complexity

❏ The current track crosses k detector units.

❏ The dimension n = 2 k of m is small, in the order of 30 for the

CMS Inner Tracker.

❏ The matrix B is of size n× 5 and is therefore small.

❏ The matrix A is a row of N blocks Ai of size n ×m, where m

is the number of alignment parameters per detector unit (usually

6).

❏ For each track, only k out of these N blocks are different from

zero:

A =
(
0 . . . 0 Ai1 0 . . . 0 Ai2 0 . . . . . . 0 Aik 0 . . . 0

)
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Implementation and computational complexity

❏ The only large matrix in the update formulas is the product

DAT .

❏ It is a column of N blocks each of which has size m× n.

❏ Complete computation of DAT would lead to an algorithm that

scales with N2.

❏ This is too slow for practical purposes.

R. Frühwirth, E. Widl LHC Alignment Workshop 15



Implementation and computational complexity

❏ Two alternatives:

✧ Algorithm A: Compute only the blocks of the modules in the

current track, neglecting all correlations.

✧ Algorithm B: Compute the blocks of the modules having

significant correlations with the modules in the current track.

❏ Algorithm A gives an unbiased estimate, but is suboptimal

because of the missing correlations.

❏ Algorithm B is nearly optimal, but it has to be guaranteed that

D̂ is positive definite all the time. This problem is being studied,

but there is not yet a foolproof solution.
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Implementation and computational complexity

❏ Tradeoff between speed and precision.

❏ In order to keep track of the necessary updates, a list Li is

attached to each detector unit i, containing the detector units

that have significant correlations with i.

❏ This list may contain only i itself in the beginning and grows as

more tracks are processed.

❏ If there is prior knowledge about correlations, for instance because

of mechanical constraints, it can be incorporated in the list and

in the initial covariance matrix.
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Implementation and computational complexity
❏ Update of the alignment parameters

1. Update the list Li for every i ∈ I (see below).

2. Form the list L of all detector units that are correlated with the ones
crossed by the current track: L =

⋃
i∈I Li. The size of L should be

much smaller than N .

3. For all j ∈ L compute: (DAT )j =
∑

i∈I DjiA
T
i . Each block Dji is of

size m×m.

4. Compute: ADAT =
∑

i∈I Ai(DAT )i.

5. Compute: VD = V + ADAT and G. All matrices involved are of size
n× n.

6. Compute: m′ = G
(
m − c −∑i∈I Aidi

)
.

7. For all j ∈ L compute: d̂j = dj + (DAT )jm
′.
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Implementation and computational complexity

❏ Update of the covariance matrix

For all j, l ∈ L compute: D̂jl = Djl +(DAT )j(GVDG− 2G)[(DAT )l]
T

❏ The computational complexity of the parameter update is of the

order |L| · |I|.
❏ The computational complexity of the update of the covariance

matrix is of the order |L|2.
❏ Restricting the size of the lists Li is of crucial importance.
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Implementation and computational complexity

❏ Current proposal for building the lists Li is based on the concept

of a distance between two modules i and j.

❏ Define the following relation:

i ∼ j ⇐⇒ i and j have been crossed by the same track

❏ The relation “∼” is symmetric, but not transitive.

❏ Define the distance d(i, j) between detector units i and j by:

1. d(i, i) = 0

2. If i �= j and i ∼ i1 ∼ i2 ∼ · · · ∼ in ∼ j is the shortest chain connecting
i to j, the distance is d(i, j) = n+ 1.
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Implementation and computational complexity

❏ i ∼ j ⇐⇒ d(i, j) = 1

❏ d is a proper metrics:

1. d(i, j) = 0 if and only of i = j

2. d(i, j) = d(j, i)

3. d(i, j) ≤ d(i, k) + d(k, j) for all k

❏ The list Li contains all modules k with d(k, i) ≤ dmax.
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Implementation and computational complexity

❏ Alternative approaches conceivable:

✧ Let the lists grow until the correlations have stabilized. Then,

drop all correlations below an upper limit. Dynamic, adapts to

the track sample used.

✧ Determine “optimal” correlation structure from simulated data.

Static, has to be done separately for every potential track

sample (cosmics, beam halo, interactions).

❏ Detailed studies required.
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Two-track fitter

❏ Use vertex- and mass-constrained track pairs to improve

momentum resolution

❏ Examples: Z −→ µ+µ−, J/ψ −→ µ+µ−

❏ The five track parameters are replaced by nine decay parameters:

✧ the position v of the decay vertex

✧ the momentum p of the mother particle in the lab frame

✧ the two decay angles (θ, ϕ) in the rest frame of the mother

particle

✧ the mass m of the mother particle
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Two-track fitter

❏ The mass is constrained by adding a virtual observation of the

mass (theoretical value plus width).

❏ The Jacobians w.r.t. the decay parameters are obtained by the

chain rule:

∂mi

∂(v,p, θ, ϕ)
=
∂mi

∂xi
· ∂xi

∂(v,pi)
· ∂(v,pi)
∂(p, θ, ϕ)

❏ Otherwise the formalism remains unchanged.
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Examples

❏ Two setups, subsets of CMS Tracker

✧ “Small wheel”: 3 Pixel layers (180 modules), 4 TIB layers (156

modules)

✧ “Large wheel”: 3 Pixel layers (180 modules), 4 TIB layers (156

modules), 6 TOB layers (344 modules)

❏ Alignment of TIB and TOB relative to Pixel barrel
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Examples

❏ Small wheel

❏ pixels are fixed, 156 TIB modules are aligned

❏ Misalignment:

σ(∆u) = 100µm, σ(∆v) = 100µm, σ(∆γ) = 5mrad

❏ 25000 muon pairs fromZ −→ µ+µ− (50000 tracks)

✧ No correlations

✧ Full correlations

R. Frühwirth, E. Widl LHC Alignment Workshop 26



Examples

Small wheel with 4 TIB layers
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Examples

Entries  156

Mean    4.311

RMS     53.07

m]µu [∆
-150 -100 -50 0 50 100 1500

2
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16

18

Entries  156

Mean    4.311

RMS     53.07

no correlations Entries  156

Mean   -0.4082

RMS     1.238

 [mrad]γ∆
-5 -4 -3 -2 -1 0 1 2 3 4 50
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40

50

60

Entries  156

Mean   -0.4082

RMS     1.238

no correlations

Entries  156

Mean    8.557

RMS     14.53

m]µu [∆
-150 -100 -50 0 50 100 1500
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Entries  156

Mean    8.557

RMS     14.53

full correlations Entries  156

Mean   -0.1357

RMS    0.3587

 [mrad]γ∆
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Entries  156

Mean   -0.1357

RMS    0.3587

full correlations

Residuals after alignment

R. Frühwirth, E. Widl LHC Alignment Workshop 28



Examples

Entries  156

Mean    0.738

RMS     6.035

u∆normalized errors for 
-20 -15 -10 -5 0 5 10 15 200

2
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6

8

10
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Entries  156

Mean    0.738

RMS     6.035

no correlations Entries  156

Mean   -1.621

RMS     4.393

γ∆normalized errors for 
-20 -15 -10 -5 0 5 10 15 200

5
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Entries  156

Mean   -1.621

RMS     4.393

no correlations

Entries  156

Mean   0.3853

RMS     0.587

u∆normalized errors for 
-20 -15 -10 -5 0 5 10 15 200
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Entries  156

Mean   0.3853

RMS     0.587

full correlations Entries  156

Mean   -0.2948

RMS    0.6792

γ∆normalized errors for 
-20 -15 -10 -5 0 5 10 15 200

10

20
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40

50

60

70

80

Entries  156

Mean   -0.2948

RMS    0.6792

full correlations

Standardized residuals after alignment
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Examples

number of updates
200 400 600 800 1000 1200 1400

number of updates
200 400 600 800 1000 1200 1400

m
]  

  
µ

u 
[

∆

-200

-150

-100

-50

0

50

100

150

no correlations

number of updates
200 400 600 800 1000 1200 1400

number of updates
200 400 600 800 1000 1200 1400

 [m
ra

d]
   

   
γ∆

-10

-8

-6

-4

-2

0

2

4

6

8

no correlations

number of updates
10000 20000 30000 40000 50000

number of updates
10000 20000 30000 40000 50000

m
]  

  
µ

u 
[

∆

-200

-150

-100

-50

0

50

100

150

full correlations

number of updates
10000 20000 30000 40000 50000

number of updates
10000 20000 30000 40000 50000

 [m
ra

d]
   

 
γ

∆
-10

-8

-6

-4

-2

0

2

4

6

8

full correlations

Evolution of residuals
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Examples

number of updates
200 400 600 800 1000 1200 1400

number of updates
200 400 600 800 1000 1200 1400

m
]  

  
µ

u 
[

∆

-200

-150

-100

-50

0

50

100

150

no correlations - 3 estimated parameters

number of updates
200 400 600 800 1000 1200 1400

number of updates
200 400 600 800 1000 1200 1400

m
]  

  
µ

u 
[

∆

-200

-150

-100

-50

0

50

100

150

no correlations - 1 estimated parameter

number of updates
10000 20000 30000 40000 50000

number of updates
10000 20000 30000 40000 50000

m
]  

  
µ

u 
[

∆

-200

-150

-100

-50

0

50

100

150

full correlations - 3 estimated parameters

number of updates
10000 20000 30000 40000 50000

number of updates
10000 20000 30000 40000 50000

m
]  

  
µ

u 
[

∆
-200

-150

-100

-50

0

50

100

150

full correlations - 1 estimated parameter

Evolution of residuals (1 or 3 alignment parameters)
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Examples

❏ Large wheel

❏ pixels are fixed, 500 TIB/TOB modules are aligned

❏ Misalignment:

σ(∆u) = 100µm, σ(∆v) = 100µm

❏ 25000 muon pairs fromZ −→ µ+µ− (50000 tracks)

✧ No correlations

✧ Full correlations

✧ Correlations up to dmax = 5

✧ Two-track fitter with correlations up to dmax = 5
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Examples
Entries  500

Mean   0.1054

RMS     22.19

m]µu [∆
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Entries  500

Mean   0.1054

RMS     22.19

no correlations Entries  500

Mean   -0.4213

RMS     10.02

m]µu [∆
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Entries  500

Mean   -0.4213

RMS     10.02

full correlations

Entries  500

Mean   0.4193

RMS     10.03

m]µu [∆
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120

140

Entries  500

Mean   0.4193

RMS     10.03

=5 and mass-constraintmaxcorrelations with d Entries  500

Mean   -0.4291

RMS     9.872

m]µu [∆
-100 -80 -60 -40 -20 0 20 40 60 80 1000

20
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100
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140

Entries  500

Mean   -0.4291

RMS     9.872

=5maxcorrelations with d

Residuals after alignment
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Examples
Entries  500

Mean   0.1323

RMS     1.405

u∆normalized errors for 
-3 -2 -1 0 1 2 3

2

4

6

8

10

12

14
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18

Entries  500

Mean   0.1323

RMS     1.405

no correlations Entries  500

Mean   -0.02499

RMS    0.7028

u∆normalized errors for 
-3 -2 -1 0 1 2 30
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60

Entries  500

Mean   -0.02499

RMS    0.7028

full correlations

Entries  500

Mean   0.01842

RMS    0.7128

u∆normalized errors for 
-3 -2 -1 0 1 2 30
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20
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60

Entries  500

Mean   0.01842

RMS    0.7128

=5 and mass-constraintmaxcorrelations with d Entries  500

Mean   -0.02929

RMS    0.6746

u∆normalized errors for 
-3 -2 -1 0 1 2 30

10

20

30

40

50

Entries  500

Mean   -0.02929

RMS    0.6746

=5maxcorrelations with d

Standardized residuals after alignment
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Examples

number of updates
200 400 600 800 1000 1200 1400 1600 1800 2000

number of updates
200 400 600 800 1000 1200 1400 1600 1800 2000

m
]  

  
µ

u 
[

∆

-200

-150

-100

-50

0

50

100

150

no correlations

number of updates
10000 20000 30000 40000 50000

number of updates
10000 20000 30000 40000 50000

m
]  

  
µ

u 
[

∆

-200

-150

-100

-50

0

50

100

150

full correlations

number of updates
2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

number of updates
2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

m
]  

  
µ

u 
[

∆

-200

-150

-100

-50

0

50

100

150

=5 and mass-constraintmaxcorrelations with d

number of updates
2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000

number of updates
2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000

m
]  

  
µ

u 
[

∆
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-150

-100

-50

0

50

100

150

=5maxcorrelations with d

Evolution of residuals
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Examples

size of correlations
-1 -0.8 -0.6 -0.4 -0.2 -0 0.2 0.4 0.6 0.8 10

10000

20000
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80000
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20.000

Evolution of correlations
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Examples

❏ Approximate total processing times

✧ No correlations: 1.5 h

✧ Full correlations: 39.5 h

✧ Correlations up to dmax = 5: 7.5 h

✧ Two-track fitter with correlations up to dmax = 5: 16 h

❏ Can be speeded up considerably by using pixel tracks as prediction

(no update of pixel modules)
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Summary and Outlook

❏ Kalman filter for sequential estimation of alignment constants

❏ Successful test on small-scale setups

❏ Advantages

✧ No solution of large systems of equations

✧ Depth of correlations can be taylored to setup

✧ Errors of estimated alignment constants are always available

✧ Can be used for stopping criterion
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Summary and Outlook

❏ Disadvantages

✧ Larger computational expense per track

✧ More bookkeeping required

❏ Outlook

✧ Extend to full set of angles and shifts

✧ Study alternative approaches to correlation lists

✧ Speed optimization

✧ Large-scale examples
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