
LHC Detector Alignment Workshop

September 4− 6 2006, CERN

Alignment Algorithms

Volker Blobel − Universität Hamburg

Abstract

Tracking detectors in high energy physics experiments require an accurate determination of a large number of alignment parameters in order to allow a precise
reconstruction of tracks and vertices. In addition to the initial optical survey and corrections for electronics and mechanical effects the use of tracks in a special
software alignment is essential. Many different methods are used in HEP, which either require a large number of iterations, due to a linear convergence behaviour,
or which require the solution of a large matrix equation. The general program Millepede performs a simultaneous least squares fit of a large number of tracks,
with determination of (global) alignment parameters and (local) track parameters. The version II, which is under development, provides several options for the
solution of large matrix equations. Aim is a program that is able to determine up to 100 000 alignment parameters in a reasonable time on a standard PC.

1. Introduction and classification

2. Alignment of a toy detector

3. Millepede I and II

4. Mathematical methods

Summary

Before alignment after alignment

Keys during display: enter = next page; → = next page; ← = previous page; home = first page; end = last page (index, clickable); C-← = back; C-N = goto

page; C-L = full screen (or back); C-+ = zoom in; C-− = zoom out; C-0 = fit in window; C-M = zoom to; C-F = find; C-P = print; C-Q = exit.

1. Introduction and classification

Alignment/calibration requires to understand the detector (functional relationship) and to optimize
thousands or ten thousands of parameters. Aim is – after an initial optical survey and corrections for
electronics and mechanical effects:

• reduce χ2 of the track fits, in order to improve track and vertex recognition, and

• increase precision of reconstructed tracks and vertices, inproved mass and vertex resolution,
eliminating or reducing bias in detector data.

. . . essential for important aspects of physics analysis with large accurate vertex detectors with potential
precision of a few µm.

Purpose of instrument calibration: Instrument calibration is intended to eliminate or reduce
bias in an instrument’s readings over a range for all continuous values. For this purpose, reference
standards with known values for selected points covering the range of interest are measured with
the instrument in question. Then a functional relationship is established between the values of
the standards and the corresponding measurements [. . . from NIST].

Alignment/calibration of HEP track detectors:

• based on survey data, perhaps on Laser alignment data, and mainly on track residual minimiza-
tion (incomplete data, several degrees of freedom undefined);

• no “reference standards with known values” exist (≈ exceptions are data from e+e− → µ+µ−

and cosmics with B = 0).

V. Blobel – University of Hamburg Alignment Algorithms page 2

Alignment parameter corrections ∆p

Geometrical corrections: six parameters are required for each individual detector element or larger
detector component: translations: (∆u, ∆v, ∆w) and angles: (α, β, γ).
Often three parameters (two translations, one rotation) are very sensitive.

Planar sensors (silicon pixel or strip detectors): local (sensor) coordinates (u, v, w) and global
detector coordinates r = (x, y, z) are transformed by

(u, v, w) = R (r − r0) R, r0 = nominal rotation, position

(u, v, w)aligned = ∆R R (r − r0) + (∆u, ∆v, ∆w)

The correction matrix ∆R is given by small rotations by α, β, γ around the u-axis, the (new) v-axis
and the (new) w-axis:

∆R = RαRβRγ ≈

 1 γ −β
−γ 1 α
β −α 1

 ,

where the approximation has sufficient accuracy for small angles.

Drift chamber: Lorentz-angle, T0, drift velocity vdrift, . . . global, and per plane, per layer . . .
and e.g. correction dependent on angle between track and drift direction.

V. Blobel – University of Hamburg Alignment Algorithms page 3

Optimization

Alignment as an optimization problem:

• definition of an objective function F (∆p), to be minimized;

• large number n of correlated parameters, up to n ≈ 6× 5 000 (Atlas) or n ≈ 6× 20 000 (CMS);

• non-linearities are expected to be not large.

The standard minimization method to obtain ∆p = corrections to alignment parameters requires the
solution of a system of linear equations:

C ∆p = b

(C is a n-by-n matrix) or of a sequence of such systems of linear equations in case of non-linearities.

Most (not all) physicists think:

• The solution of a matrix equation requires a matrix inversion! not true!

• Matrix inversion is impossible for a large matrix! not true!

“The solution of 4200 equations in 4200 unknowns is computationally infeasible. Even worse,
non-linear fit won‘t converge.”

Therefore most alignment methods work only with small matrices.

V. Blobel – University of Hamburg Alignment Algorithms page 4

Classification

• Minimization of sum of squares of residuals: A “global” objective function F (. . .) or χ2-
function is constructed

F (. . .) =
∑

data sets

(∑
events

(∑
tracks

(∑
hits

∆2
i /σ

2
i

)))

Biased algorithms: methods with solution of many small system of equations; requires itera-
tions to reduce or remove bias.
F (∆p) = . . . depends on the alignment parameters corrections ∆p.
Almost all alignment methods tried in HEP experiments are of this type.

Unbiased algorithms: direct methods with solution of large system of equations, allowing to
apply constraints.
F (∆p, q) = . . . depends on the corrections to alignment parameters ∆p and all track
parameters q
Examples: Millepede (used by several experiments), Brueckman de Renstroem (Atlas)

• Special methods (discussed in other talks)

Kalman filter: ⇒ Talk by Rudi Frühwirth: “Alignment using a Kalman Filter Technique”
Update of alignment parameters (sequential parameter estimation) during track processing.

SLD: ⇒ Talk by Fred Wickens: “Alignment experience from SLD”
Fits of different functional forms to various residual types, and extraction of alignment parameters from
fitted functional forms.

V. Blobel – University of Hamburg Alignment Algorithms page 5

2. Alignment of a toy detector

Test of alignment method with a MC toy track de-
tector model:

• 10 planes of tracking chambers, 1 m high, 10
cm distance, no magnetic field;

• accuracy σ ≈ 200µm, with efficiency ε =
90%;

• plane 7 sick: accuracy σ ≈ 400µm, with effi-
ciency ε = 10%;

• 10 000 tracks with 82 000 hits available for
alignment;

• Misalignment: the vertical position of the
chambers are displaced by ≈ 0.1cm (normal
distributed).

V. Blobel – University of Hamburg Alignment Algorithms page 6

First attempt based on residuals

The first alignment attempt is based on the distribution of hit residuals:

• A straight line is fitted to the track data, ignoring the misalignment.

• The residuals (fitted coordinate fi − measured vertical) are histogrammed, separately for each
plane.

-0.2 0 0.2
0

200

400

600

800

residuals in plane 1

-0.2 0 0.2
0

200

400

600

residuals in plane 2

-0.2 0 0.2
0

200

400

600

residuals in plane 3

. . . -0.2 0 0.2
0

20

40

residuals in plane 7

. . .

• The mean value of the residuals is taken as correction to the vertical plane position.

• One iteration reduces the residuals significantly, . . . but fitted track parameters are essentially
unchanged (biased).

This is the standard method used iteratively in many experiments. What is the convergence behaviour?

V. Blobel – University of Hamburg Alignment Algorithms page 7

Result from the first attempt

Large changes in first iteration, small changes in second iteration, almost no progress afterwards.

After 30 iterations . . .

ID true shift determined mean residual

1 0.1391 0.0727 0 ± 150
2 0.1345 0.0786 0 ± 189
3 0.0000 −0.0453 0 ± 234
4 −0.0756 −0.1102 0 ± 244
5 −0.1177 −0.1422 0 ± 205
6 0.0610 0.0475 0 ± 150
7 0.0130 0.0114 0 ± 464
8 0.0886 0.0968 0 ± 255
9 0.0000 0.0186 0 ± 149

10 −0.0467 −0.0176 0 ± 143

Units are cm.

red circle = true shift (displacement)

blue disc = displacement, determined from residuum
0 5 10

-0.2

-0.1

0

0.1

Shifts from residuals - iteration 30

V. Blobel – University of Hamburg Alignment Algorithms page 8

First attempt – Discussion

The result is not (yet) encouraging!

Method is equivalent to attempt, to solve a linear system of 10 unknowns, which is singular.

The reason for non-convergence is simple:

Two degrees of freedom are undefined: a simultaneous shift and an overall shearing of the
planes!

(. . . this simple fact is not always mentioned in reports on the method.)
Improvement for second residual attempt:

Fix the displacement (i.e. displacement = 0) of two planes, which are assumed to be
carefully aligned externally (e.g. planes 3 and 9).

Other possibilities are:

• Use only fixed planes (planes 3 and 9) in the fit, and determine the residuals of other planes;

• for the determination of the displacement of a certain plane use all other planes in the fit.

These possibilities are in fact used by several collaborations!

V. Blobel – University of Hamburg Alignment Algorithms page 9

Results from the second attempt

Large changes in first iteration, then many smaller and smaller changes: convergence is linear and
slow, because the determination of displacements is based on biased fits.

After 30 iterations with planes 3 and 9 fixed (displacement = 0) . . .

ID true shift determined mean residual

1 0.1391 0.1391 -1 ± 150
2 0.1345 0.1344 0 ± 189
3 0.0000 0 2 ± 234
4 −0.0756 −0.0758 0 ± 244
5 −0.1177 −0.1183 0 ± 205
6 0.0610 0.0607 0 ± 150
7 0.0130 0.0140 0 ± 464
8 0.0886 0.0888 0 ± 255
9 0.0000 0 0 ± 149

10 −0.0467 −0.0469 0 ± 143

Units are cm.

red circle = true shift (displacement)

blue disc = displacement, determined from residuum
0 5 10

-0.2

0

0.2 Shifts from residuals - iteration 30

V. Blobel – University of Hamburg Alignment Algorithms page 10

Iterations and convergence . . . for solution of large systems

Rate of convergence of iterative methods: {xk} be sequence in Rn that converges to solution x∗

linear convergence
||xk+1 − x∗||
||xk − x∗||

≤ r r ∈ (0, 1)

for all k sufficiently large. Speed of convergence depends on the eigenvalue spectrum – slow convergence
for small eigenvalues.

Linear convergence: (example is steepest-descent)
constant r may be close to 1; iteration numbers of 100 or 1000 not uncommon; an algorithm with
r close to 1, i.e. 1 − r � 1 is in practice considered as not converging at all. For a quadratic
objective function:

||xk+1 − x∗||
||xk − x∗||

≤ r =
κ− 1

κ + 1
κ = Condition =

λmax

λmin

(� 1)

Often in applications small ||xk+1 − xk|| is assumed to indicate convergence, but

||xk+1 − xk|| ≈ (1− r)||xk − x∗|| with (1− r) � 1

i.e. a small ||xk+1 − xk|| does not mean small distance to the solution!

Note: an iterative method can be also faster than a direct method!

V. Blobel – University of Hamburg Alignment Algorithms page 11

Shift per iteration . . . in residual method

Many small shifts xk − x∗ add up during the iterations.

10 20 30
-0.005

0

0.005 shift/iteration as a function of iteration number

22 24 26 28 30
-0.6

-0.4

-0.2

0

0.2

E-03 shift/iteration as a function of iteration number

. . . linear convergence.

Units are cm.

V. Blobel – University of Hamburg Alignment Algorithms page 12

Alternative: unbiased algorithm

Include the alignment parameters in the parameters fitted in track fits – requires a simultaneous fits
of many tracks, with simultaneous determination of (global) alignment parameters and (local) track
parameters.

model: yi
∼= alocal

1 + alocal
2 · xi +aglobal

j aglobal
j = shift for plane j, where yi is measured

1 tracks 2 + 10 = 12 parameters 9 equations
2 tracks 4 + 10 = 14 parameters 18 equations

.
10 000 tracks 20 010 parameters 82 000 equations

. . . a linear least squares problem of m = 82 000 equations (measurements) and n = 20 010 parameters
with n � m, which requires the solution of a matrix equation with a 20010-by-20010 matrix.

The Millepede principle allows to reduce the least squares problem to n = 10 parameters, which has
a direct unbiased solution (no iterations)!

V. Blobel – University of Hamburg Alignment Algorithms page 13

Results from a simultaneous fit

After one step (with planes 3 and 9 fixed at displacement = 0) . . .

ID true shift determined ρ mean residual

1 0.1391 0.1393± 0.0004 0.68 0 ± 150
2 0.1345 0.1346± 0.0003 0.66 0 ± 189
3 0.0000 0 ± 234
4 −0.0756 −0.0756± 0.0003 0.58 0 ± 244
5 −0.1177 −0.1182± 0.0003 0.53 0 ± 205
6 0.0610 0.0608± 0.0003 0.50 0 ± 150
7 0.0130 0.0141± 0.0007 0.20 0 ± 464
8 0.0886 0.0888± 0.0003 0.53 0 ± 255
9 0.0000 0 ± 149

10 −0.0467 −0.0469± 0.0003 0.57 0 ± 143

(ρ = global correlation coefficient, units are cm.)

red circle = true shift (displacement)

blue disc = displacement, determined in fit
0 5 10

-0.2

0

0.2 Shifts from fit - iteration 1

One step is sufficient: 1. step ∆χ2 = 1.277× 106 2. step ∆χ2 = 1.159× 10−5

V. Blobel – University of Hamburg Alignment Algorithms page 14

Determination of drift velocities . . . 10 additional parameters

Improvement: include, in addition, corrections to the drift velocities for each plane: ∆vdrift/vdrift

yi
∼= alocal

1 + alocal
2 · xi +aglobal

j + `drift,i ·
(

∆vdrift

vdrift

)
j

aglobal
j = shift for plane j(

∆vdrift

vdrift

)
j

= relative vdrift difference

reduction of residual σ by 30 - 40 %
ID true shift determined ρ ∆vdrift/vdrift determined ρ mean residual

1 0.1391 0.1393± 0.0004 0.68 0.0020 0.0019± 0.0002 0.016 0 ± 119
2 0.1345 0.1346± 0.0003 0.66 -0.0153 −0.0150± 0.0002 0.020 0 ± 128
3 0.0000 0.0193 0.0194± 0.0002 0.017 0 ± 137
4 −0.0756 −0.0756± 0.0003 0.58 0.0200 0.0197± 0.0002 0.013 0 ± 139
5 −0.1177 −0.1182± 0.0003 0.53 -0.0138 −0.0136± 0.0002 0.013 0 ± 141
6 0.0610 0.0608± 0.0003 0.50 0.0003 0.0004± 0.0002 0.019 0 ± 139
7 0.0130 0.0141± 0.0007 0.20 -0.0306 −0.0303± 0.0006 0.038 0 ± 348
8 0.0886 0.0888± 0.0003 0.53 0.0237 0.0238± 0.0002 0.018 0 ± 134
9 0.0000 -0.0044 −0.0044± 0.0002 0.008 0 ± 127

10 −0.0467 −0.0469± 0.0003 0.57 0.0021 0.0019± 0.0002 0.013 0 ± 117

. . . this would be rather difficult with a pure residual-based method.

The next improvement would be the introduction of wire T0’s – additional 10× 25 = 250 parameters.
V. Blobel – University of Hamburg Alignment Algorithms page 15

A more realistic scenario (“incomplete data”)

So far the tracks are fitted with a straight line. Now a third parameter is added to the parameterization
and a parabola is fitted, i.e. case of unknown momentum:

model: yi
∼= alocal

1 + alocal
2 · xi + alocal

3 · x2
i

Th initial misalignment will create a curvature 6= 0 – the data are now insufficient to determine the
true shifts.

Alignment by residual method

-0.1 0 0.1
0

200

400

600

800
Curvature

curvature in units of 10^(-3)
0 5 10

-0.2

0

0.2 Shifts from residuals - iteration 30

-0.1 0 0.1
0

500

1000

Curvature

curvature in units of 10^(-3)

fitted curvature before after alignment

V. Blobel – University of Hamburg Alignment Algorithms page 16

3. Millepede

Determination of corrections ∆p for alignment parameters p is based on minimization of residuals –
the difference between fitted and measured track position:

∆i = fitted value − measured value

A “global” objective function F (∆p, q) or χ2-function is constructed, which depends on the correc-
tions ∆p and all track parameters q

F (∆p, q) ≡ χ2
(
∆p, qj

)
=

∑
data sets

(∑
events

(∑
tracks

(∑
hits

∆2
i /σ

2
i

)))

Data sets are

• Physics data: track data from e+e−-, e− p-, p p-reactions,

• Cosmics with magnetic field (large distance to IP) and without magnetic field (straight tracks,
curvature zero),

• vertex- or mass-constrained track data,

• external alignment data.

A mixture of different data is recommended, in order to introduce different correlations between the
alignment parameters and to increase the precision.

V. Blobel – University of Hamburg Alignment Algorithms page 17

Normal equations . . . in combined fit

Simultaneous least squares fit of all global and all local parameters (i.e. all tracks).

k′th track: yi
∼= f(xi; p

global, qlocal) +
(
dglobal

i

)T

∆pglobal +
(
δlocal

i

)T
∆qlocal

k

The complete matrix equation for global and local parameters includes sums over track index k and contains many matrices: n-by-n matrices

C for n global parameters and m-by-m matrices Clocal
k and n-by-m matrices Hglobal-local

k

∑
k Cglobal

k · · · Hglobal-local
k · · ·

...
. . . 0 0

(
Hglobal-local

k

)T
0 C local

k 0

... 0 0
. . .

×

∆pglobal

...

∆qlocal
k

...

=

∑
k bglobal

k

...

blocal
k

...

If the Hglobal-local
k are neglected, the complete equation decays into 1 + K independent matrix equations.

∆pglobal can be calculated without approximation with a great simplification: ⇒
V. Blobel – University of Hamburg Alignment Algorithms page 18

Solution by partitioning

Partitioning the matrix equation Ca = b (C symmetric, C11 and C22 are square matrices): C11 C12

CT
12 C22

 a1

a2

 =

 b1

b2

If C12 ≡ 0 : C22 a∗
2 = b2 a∗

2 = C−1
22 b2 (called local solution)

Submatrix B of the complete inverse matrix correponding to the upper left part C11 is easy to calculate

afterwards: B =
(
C11 −C12C

−1
22 CT

12

)−1
and complete inverse matrix equation in terms of B: a1

a2

 =

 B −BC12C
−1
22

−C−1
22 CT

12B C−1
22 −C−1

22 CT
12BC12C

−1
22

 b1

b2

Solution for subvector a1 :
(
C11 −C12C

−1
22 CT

12

)
a1 = (b1 −C12a

∗
2)

V. Blobel – University of Hamburg Alignment Algorithms page 19

Reduction of matrix size . . . the Millepede principle

For each track in a loop, on all tracks:

1. Track- or other fit: perform fit by finding the best local parameter values for the actual track

until convergence with covariance matrix V k =
(
C local

k

)−1
of the local parameters

2. Derivatives: calculate for all hits (index i) the vectors of derivatives δlocal
i and dglobal

i for all local
and the relevant global parameters, and update matrices:

C := C +
∑

i

wid
global
i

(
dglobal

i

)T

b := b +
∑

i

wirid
global
i Hk =

∑
i

wid
global
i

(
δlocal

i

)T
and finally for the track C := C −HkV kH

T
k b := b−Hk (V kbk)

The two ‘blue’ equations transfer the ‘local’ information to the global parameters.

After the loop on all tracks the complete information is collected; now the matrix equation for the
global parameters has to be solved:

solve C∆pglobal = b for ∆pglobal e.g. by ∆pglobal = C−1 b

Note: matrices C and vectors b from several data sets can be simply added to get combined result.

V. Blobel – University of Hamburg Alignment Algorithms page 20

Solution by matrix inversion in Millepede I . . . for n up to 5000

Standard method for solution of C∆p = b with symmetric matrix is stable Gauss algorithm with
pivot selection of diagonal, with

Computing time = constant× n3 < 1 hour for n = several thousand

A standard inversion routine will fail – at least a few parameters out of many thousands
will be badly defined. – Matrix is almost singular and is destroyed during computation
without result for ∆p.

Subroutine SPMINV (in Millepede); in-space inversion of symmetric matrix in (n2 + n)/2 words:
choose always largest pivot, but stop inversion if no acceptable pivot found, i.e. invert largest possible
submatrix; return zero corrections for remaining parameters. All variances and covariances available
in inverse matrix.

The global correlation coefficient, ρj is a measure of the total amount of correlation between the
j-th parameter and all the other variables. It is the largest correlation between the j-th parameter
and every possible linear combination of all the other variables.

ρj =

√
1− 1

(V)jj · (C)jj

and (V)jj · (C)jj =
1

1− ρ2
j

V = C−1

Matrix is ill-conditioned (almost singular), if any ρ close to 1, with large condition number κ.

V. Blobel – University of Hamburg Alignment Algorithms page 21

Global correlations

Range of global correlation coefficient is 0 . . . 1.

Values ≈ 1 means strong correlation and almost singular matrix – inversion may be impossible (and
biased iterative methods would be extremely slow).

Values depend on geometry and type of data – additional data (cosmics, vertex and mass-constrained
tracks) can reduce the global correlation and improve the alignment.

V. Blobel – University of Hamburg Alignment Algorithms page 22

Undefined degrees of freedom . . . or weakly defined degrees of freedom

Alignment of HEP track detectors . . . if based only on track residual minimization: incomplete data,
with several degrees of freedom undefined! Certain parameters are undefined or only weakly defined
and could distort the detector.

General linear transformation of whole detector with translation and 3× 3 matrix Rx′

y′

z′

 =

dx

dy

dz

+ R

x
y
z

defined by 3 + 9 parameters, will not affect the χ2 of the fits. The matrix can be decomposed into

• three rescaling factors of coordinate axes: fx, fy, fy,

• three rotations: Dx, Dy, Dz and three shearings: Txz, Tyz, Txy.

In addition there may be weakly defined nonlinear transformations (bend).

Degrees of freedom can be fixed, if necessary,

• by mixture of different data and by external measurements → hardware alignment devices, i.e.
alignment by tracks has to be supplemented by external information, or e.g. by fixed planes;

• by equality constraints (e.g. dx = 0) or by orthogonalization methods.

V. Blobel – University of Hamburg Alignment Algorithms page 23

Equality constraints

Undefined degrees of freedom can be fixed by adding equality constraint equations of the type

g(p) = 0 e.g. dx =
∑

i

∆xi = 0

e.g. “zero average displacement”, or “zero rotation of the whole detector”.

There are several possibilities:

• fix certain parameters (e.g. planes), or

• fix linear combinations of parameters (after diagonalization), or

• add equality constraint equation, i.e. append linearized Lagrange multiplier equation

λ
(
g(p) + gT ·∆p = 0

)
with g = ∂g(p)/∂p

(determination of stationary point of Lagrange function, matrix not positive definite.): Cglobal g

gT 0

 ∆pglobal

λ

 =

 bglobal

−g(p)

• alternative is penalty function (. . . + |g(p)|2) or combination of both (augmented Lagrangian);

• elimination method, with reduction of the total number of parameters.

V. Blobel – University of Hamburg Alignment Algorithms page 24

History . . . of Millepede I

First development of Millepede principle (reduction of matrix) 1996 . . . and used in H1 1997 . . .

• V. Blobel: Experience with Online Calibration Methods, Contribution to CHEP’97, Berlin 1997
(including the Millepede principle), not accepted.

• Millepede I, code available on web page http://www.desy.de/~blobel

V. Blobel, Linear Least Squares Fits with a Large Number of Parameters, (2000), 22 pages
and full Fortran code.

• V. Blobel and C. Kleinwort: A New Method for the High-Precision Alignment of Track Detectors,
PHYSTAT2002, Durham, arXiv-hep-ex/0208021

Millepede design: experiment-independent program, with well-defined interface to experiment-
dependent data.
Used (or under test) by H1(1997), CDF(2001), HERA-b, ZEUS, CMS, ATLAS, LHC-b, Compass,
Phenix . . . ??? and rewritten in C++ several times (unpublished).

⇒ Talk by Claus Kleinwort: combined alignment/calibration of H1 vertex detector and drift chamber
(resolution improved by factor 2).

Formalism equiv. to Millepede principle derived for ATLAS:
P.Bruckman, S.Haywood, Least Squares Approach to the Alignment of the Generic High Precision
Tracking System, PHYSTAT05, Oxford 12-15 Sept. 2005

Principle of reducing matrix size (perhaps) used already in 19.th century in surveying.

V. Blobel – University of Hamburg Alignment Algorithms page 25

Millepede II

Start of development in May 2005 after discussions with Hamburg cms group, with aim:

• alignment with up to 100 000 parameters in a reasonable time on a standard PC;

• keep Millepede principle (unbiased, simultaneous fit of arbitrary number of tracks and of align-
ment parameters);

• allow different (direct and iterative) methods for the solution of large matrix equation, using
mathematical methods from the (mathematical) community (literature) (no home-made iterative
methods);

• design with even stronger separation of experiment-dependent program and the Millepede align-
ment computation;

• automatic recognition of existing alignment parameters, allowing suppression of parameters with
too few data;

• constraints as equality constraints, or like measurements.

Test by PhD student (CMS) since summer 2005. Not yet all options realized.

V. Blobel – University of Hamburg Alignment Algorithms page 26

“Decay” of Millepede . . . Millepede II

Millepede ⇒ Mille + Pede

Mille: small C++ or Fortran routine, called within the experiments event-processing program

Pede: stand-alone experiment-independent alignment program, with many options

Mille Event loop: write alignment information (derivatives, hits, . . .) to special file

Pede Normal equation loop: read special file and form matrix and vector

Solution of matrix equation (direct or iterative)

solve C∆p = b for ∆p

End of solution

End of normal equation loop

End of event loop

12 h for event loop, 1
2

h for Millepede II

Event loop: only once to extract the data (more than once, if large non-linearities)

Normal equation loop: once (or repeated, if outlier suppression necessary or for L-BFGS)

Solution of matrix equation: inversion (n < 5000), or iterative solution (MINRES, or L-BFGS)

V. Blobel – University of Hamburg Alignment Algorithms page 27

4. Mathematical methods Overview

The introduction of overall equality constraints requires the solution of large systems of equations!

How to solve very large systems of equations?

No single optimal method, different methods for different conditions (number of parameters, sparsity):

Matrix inversion: • e.g. routine in MP I, for up to 5 000 parameters, with time ∝ n3;

Diagonalization: • slower than inversion, allows to recognize insignificant linear combinations (no
constraints necessary); possible for large n on special hardware;

Sparse matrix storage: • allows to store big sparse matrices

Generalized minimal residual method: • fast method for large sparse matrices, factor > 1 000
faster than inversion for n =12 000. Routines MINRES • (and SYMMLQ);

Preconditioning: 	 allows to reduce number of iterations, possible in MINRES (and SYMMLQ);

Limited memory BFGS: • uses only virtual matrix, low space requirement, but many iterations(?);

Millepede II Code: • =included, 	 = not yet tried.

Method of M-estimates instead of cuts against outliers; square (of least squares) replaced by density
with larger tails for outliers.

V. Blobel – University of Hamburg Alignment Algorithms page 28

Solution time . . . versus dimension n

1000 1E4 1E5 1E6
1E-5

1E-4

0.001

0.01

0.1

1

10

100

1000

1E4

1E5 Computing time

number of parameters

tim
e

in
 h

ou
rs

SPINV

diagonalization

prop to n^2.5

prop to n^3

1 hour

1 minute

1 second

1 year

???

The two circles are points, measured with Millepede II for n = 12 015. The lower curve is for an
iterative method (MINRES), which requires only space for the sparse matrix C.

V. Blobel – University of Hamburg Alignment Algorithms page 29

Matrix space . . . versus dimension n

1000 1E4 1E5 1E6
0.01

0.1

1

10

100

1000

1E4

Matrix size

number of parameters

nu
m

be
r o

f M
by

te
s

35 k 100 k

limem BFGS

512 Mbyte

10 Gbyte

dense

sparse, q=0.01

q=0.05

q=0.2

q = fraction of non-zero off-diagonal elements

V. Blobel – University of Hamburg Alignment Algorithms page 30

Solution by diagonalization

The diagonalization of the symmetric matrix C = JTJ allows to recognize singularity or near sin-
gularity by the determination of eigenvalues, and to suppress corresponding linear combinations of
parameters.
Algorithms are iterative, computing time ≈ 10 times larger compared to inversion, and solution less
precise.

C = U D UT Diagonalization of symmetric matrix

with D diagonal, U square and orthogonal with U UT = UT U = 1. Note: C−1 = U D−1 UT

eigenvalue ordering in D = [diag (λi)] : λ1 ≥ . . . ≥ λk ≥ λk+1 = . . . λn = 0 (or very small)

Solution of C ∆p = b by ∆p = U

[
diag

(
1√
λi

)][
diag

(
1√
λi

)] (
UTb

)
︸ ︷︷ ︸
= q with V [q] = 1

with replacement 1/λi = 0 for λi = 0 or small qi with |qi| . 1

⇒ Suppression of insignificant linear combinations, which could produce distortions of the detector.

V. Blobel – University of Hamburg Alignment Algorithms page 31

Reduction of the number of parameters

(1) Consider the six parameters ∆p of a single sensor (translation + rotation) and the corresponding
6× 6 matrix C6×6 and right-hand side 6-vector b:

C6×6 ∆p = b with diagonalization C6×6 = UDUT

The transformed vector of linear combinations

q = UTb

has a diagonal covariance matrix V = D−1, and thus the linear combinations are uncorrelated.

Idea: consider only the three most-sensitive (i.e. with largest diagonal elements) or most-significant
linear combinations, or try two pairs of each three linear combinations, which are almost independent.

This reduces the storage space of the matrix to 1/4.

(2) One (small) set of alignment parameters for large detector section, added to single-sensor alignment
parameters which are either active (with

∑
= 0 constraint), or non-active (fixed parameters).

V. Blobel – University of Hamburg Alignment Algorithms page 32

Solution by singular value decomposition SVD

Singular value decomposition avoids the formation of normal equations (C = JTJ) and is numerically
more accurate than normal-equation methods.

J = V D UT Singular value decomposition (SVD) for m× n matrix J

with D diagonal, U square and orthogonal with U UT = UT U = 1 and m × n matrix V column-
orthogonal with V T V = 1. Diagonal elements σi of D are called singular values, with σ2

i = λi.

Solution of min ‖J ∆p− r‖2 by ∆p = U

[
diag

(
1

σi

)] (
V Tr

)

with 1/σi = 0 for σi = 0 or close to 0. ⇒ Suppression of insignificant linear combinations, which
could produce distortions of the detector.

Advantage: numerically accurate due to small condition number κ(D) =
√

κ(JTJ)

Disadvantage: requires to store huge m× n matrices J/V and large n× n matrix U , and can not be
used (in this form) in large alignment problems. SVD can be applied to the matrix C = JTJ ; then it
is equivalent to diagonalization.

V. Blobel – University of Hamburg Alignment Algorithms page 33

Sparse matrix storage

Large matrices are usually sparse, with small fraction q of non-zero off-diagonal elements. The auto-
matic generation of parameter-index relations requires a large number of comparisons. A fast method
using a combination of hashing, sorting and binary search is used in MP II.

Note: the inverse of a sparse matrix

×
×

×
×

×
×

×
×

×
×

×
×

×

×
×

×
×

×
×

×

×

×

×

×

×

×

×
×

×

×

×

×

×

×
is a dense matrix:

××××××××××××
××××××××××××
××××××××××××
××××××××××××
××××××××××××
××××××××××××
××××××××××××
××××××××××××
××××××××××××
××××××××××××
××××××××××××
××××××××××××

Mathematical methods for the solution exist, which only require the product of the matrix with vectors:
y = Cx.

The indexed storage scheme of PCGPACK, modified for a symm. matrix, is used: it requires arrays with

n + q · n(n− 1)/2 double precision (data) and integer (indices) words

and is optimized for the product (9 lines of code). During matrix generation (sums): a (binary) search
is necessary to find the location for an index pair (i, j)

V. Blobel – University of Hamburg Alignment Algorithms page 34

A sparse matrix example

Example: 250 000 tracks,
500 Mbytes file,
4 400 variable parameters,
3.1 % non-zero off-diagonal el-
ements (plot ⇒ ps-file),
100 sec for preparation, and
100 sec per iteration
(250 000 track fits + solution).

0 2000 4000
0

2000

4000

V. Blobel – University of Hamburg Alignment Algorithms page 35

Generalized minimal residual method (GMRES)

Solution of a very large system of linear equations with sparse matrix, by an optimized solution of a
quadratic minimization problem, in analogy to the method of conjugate gradients (Hestenes, Stiefel
1952).

Example: MINRES (M. A. Saunders), designed to solve

system of linear equations C ∆p = b or min ||C ∆p− b||2

where C is a symmetric matrix of logical size n × n, which may be indefinite, very large and sparse.
It is accessed only by means of a subroutine call

call Aprod (n, x, y) to return y = Cx

for any given vector x.

Preconditioning is an option in MINRES by means of a subroutine call

call Msolve(n, x, y) , to solve My = x for y

without altering vector x. The matrix M−1 should be an approximation to C−1, such that M−1C ≈ 1.
(not yet implemented).

C. C. Paige and M. A. Saunders (1975), Solution of sparse indefinite systems of linear equations, SIAM J. Numer. Anal. 12(4), pp. 617-629.

www.stanford.edu/group/SOL/software/minres.html

V. Blobel – University of Hamburg Alignment Algorithms page 36

Comparison

For 12 000 parameters

• matrix inversion (cpu-time 12 h, 46 min, 5 s), and

• iterative solution with MINRES (cpu-time 32 s).

V. Blobel – University of Hamburg Alignment Algorithms page 37

Quasi-Newton methods . . .

. . . require only the gradient ∇F of the objective function F (p) at each iteration. New step ∆p for
line search of F (p + α ·∆p) is calculated from

H ∆p = −∇F or −B∇F = ∆p with B = H−1

with approximate Hessian H or inverse Hessian B.

Starting from a simple assumption (e.g. γ1) the Hessian H or the inverse Hessian B is improved by
updates, using the difference vectors

sk = pk+1 − pk yk = ∇Fk+1 −∇Fk .

Requiring the secant equation Hk+1sk = yk or Bk+1yk = sk, the most-popular update formula is

ρk = 1/yT
k sk Bk+1 =

(
1− ρksky

T
k

)
Bk

(
1− ρkyks

T
k

)
+ ρksks

T
k (BFGS)

(used e.g. in MINUIT/MIGRAD).

To minimize F (p + α ·∆p) the line-search has to satisfy the Wolfe (or strong Wolfe) conditions.

The BFGS method has O(n2) operations per iteration and has a superlinear rate of convergence . . . but
requires of course to store the full (dense) matrix B and thus cannot be used.

Quasi-Newton method, a revolutionary idea, invented by physicist W.C. Davidon (Argonne) in the mid 1950s; paper
not accepted for publication. Different update formulas were developed during the following 20 years.
V. Blobel – University of Hamburg Alignment Algorithms page 38

Limited memory BFGS

One step of the BFGS method has the form

pk+1 = pk − α· (Bk∇Fk) (line search, α usually close to 1)

The limited memory BFGS (short: L-BFGS) method uses update information only

from the m most recent iterations.

With B0 = γ1 the product Bk∇Fk can be evaluated from the last m difference vectors yk, sk only
(no matrix storage).

• Good values for m are in the range 3 . . . 20;

• the storage requirement with n (2m + 4) is linear in n, i.e. O(n), and

• ≈ 3/2 m2n operations are needed per iteration;

• fast rate of linear convergence.

. . . an optimization method for n � 100 000 parameters ?

J.Nocedal, Updating quasi-Newton matrices with limited storage, Mathematics of Computation 35 (1980), 773 - 782.
D.C.Liu and J.Nocedal, On the limited-memory BFGS method for large scale optimization, Mathematical Programming
45 (1989) 503 - 528
Jorge Nocedal and Stephen J.Wright, Numerical Optimization, Springer
V. Blobel – University of Hamburg Alignment Algorithms page 39

Summary

Two classes of alignment algorithms are developed in HEP experiments:

Biased algorithm: require a certain number of iterations and requires to fix certains planes (in 3D);

Unbiased algorithm: requires to solve a large system of equations, allows to
add equality constraints in formalism.

Both methods reduce average residuals – what about behaviour for long-range correlations between
alignment parameters ?

Solution methods, in order of increasing size parameter n:

F (p) ∇F H ≡ ∇2F V ≡ H−1 Method

− × × × Diagonalization
− × × × Inversion
− × (×) − Sparse H solution
× × − (×) L-BFGS (virtual H−1)

All these solution methods are implemented in Millepede II, which should become able to perform
alignment even with n ≈ 100 000 parameters.

V. Blobel – University of Hamburg Alignment Algorithms page 40

M-estimates Outlier rejection

The presence of outliers in the data can deteriorate the alignment result. Difficulty: wrong initial
alignment parameters can fake outliers.

Millepede I: Large initial cut at ≈ 10σ reduced to 3σ in ≈ 5 iterations.

Millepede II: No cut in first iteration, followed by technique of M-estimates in subsequent iterations.

The objective function in least squares is the sum of squares of scaled residuals z, with larger influence
for larger residuals (outliers). The square is replaced in M-estimates by a dependence with reduced
influence for larger residuals.

influence function add. weight
ρ(z) = ln pdf(z) ψ(z) = dρ(z)/dz ω(z) = ψ(z)/z

Least squares =
1
2
z2 = z = 1

Cauchy(c = 2.3849) =
c2

2
ln
(
1 + (z/c)2

)
=

z

1 + (z/c)2
=

1
1 + (z/c)2

Huber

{
if |z| ≤ c = 1.345
if |z| > c = 1.345

=

{
z2/2
c (|z| − c/2)

=

{
z

c · sign (z)
=

{
1
c/|z|

-10 0 10
-2

0

2 Influence function

least squares

Cauchy

Tukey

V. Blobel – University of Hamburg Alignment Algorithms page 41

Covariance matrix with MINRES

The inverse of matrix C is the covariance matrix V of the alignment parameters. This is available
with matrix inversion and diagonalization, but not with MINRES.

Method to compute some elements of V with MINRES:

Solution of matrix equation CV = 1 right hand-side is unit matrix

for V would give the complete covariance matrix V .

Solution of matrix equation Cv = u right hand-side is column-vector of unit matrix

for V will give on column of the covariance matrix V .

Elements of covariance matrix are determined by hits statistics and by geometry.

V. Blobel – University of Hamburg Alignment Algorithms page 42

Shift per iteration . . . in L-BFGS method

Fast convergence for limited memory BFGS method after iteration 8.

2 4 6 8 10

-0.005

0

0.005

shift/iteration as a function of iteration number

. . . fast rate of linear convergence.

Units are cm.

V. Blobel – University of Hamburg Alignment Algorithms page 43

Contents

1. Introduction and classification 2
Alignment parameter corrections ∆p 3
Optimization . 4
Classification . 5

2. Alignment of a toy detector 6
First attempt based on residuals 7
Result from the first attempt 8
First attempt – Discussion 9
Results from the second attempt 10
Iterations and convergence 11
Shift per iteration 12
Alternative: unbiased algorithm 13
Results from a simultaneous fit 14
Determination of drift velocities 15
A more realistic scenario 16

3. Millepede 17
Normal equations 18
Solution by partitioning 19
Reduction of matrix size 20
Solution by matrix inversion in Millepede I . . . 21
Global correlations 22
Undefined degrees of freedom 23
Equality constraints 24
History . 25
Millepede II . 26

“Decay” of Millepede 27

4. Mathematical methods 28
Solution time . 29
Matrix space . 30
Solution by diagonalization 31
Reduction of the number of parameters 32
Solution by singular value decomposition 33
Sparse matrix storage 34
A sparse matrix example 35
Generalized minimal residual method (GMRES) 36
Comparison . 37
Quasi-Newton methods 38
Limited memory BFGS 39

Summary 40
M-estimates . 41
Covariance matrix with MINRES 42
Shift per iteration 43

Table of contents 44

	1. Introduction and classification
	Alignment parameter corrections p
	Optimization
	Classification

	2. Alignment of a toy detector
	First attempt based on residuals
	Result from the first attempt
	First attempt -- Discussion
	Results from the second attempt
	Iterations and convergence
	Shift per iteration
	Alternative: unbiased algorithm
	Results from a simultaneous fit
	Determination of drift velocities
	A more realistic scenario

	3. Millepede
	Normal equations
	Solution by partitioning
	Reduction of matrix size
	Solution by matrix inversion in Millepede I
	Global correlations
	Undefined degrees of freedom
	Equality constraints
	History
	Millepede II
	``Decay'' of Millepede …

	4. Mathematical methods
	Solution time
	Matrix space
	Solution by diagonalization
	Reduction of the number of parameters
	Solution by singular value decomposition
	Sparse matrix storage
	A sparse matrix example
	Generalized minimal residual method (GMRES)
	Comparison
	Quasi-Newton methods …
	Limited memory BFGS

	Summary
	M-estimates
	Covariance matrix with MINRES
	Shift per iteration

	Table of contents

