

ATLAS Alignment Challenges

Florian Bauer, Saclay

On behalf of the ATLAS Inner Tracker and Muon alignment communities

Outlook:

- 1. Inner Tracker Alignment
- 2. Muon Tracker Alignment

Inner Tracker Alignment

PIXEL

Barrel:	1456 modules
Endcap: 2	x 144 modules
	1744 modules
One module: Total:	46.080 pixels 80.000.000 pixels
One pixel:	50μm x 400 μm
Resolution:	12μm x 60 μm

Hits per track: 3

Single Pixel module All modules have same layout Florian Bauer, 4 September 2006, LHC Alignment Workshop

A view of 3 completed discs of one Endcap (5)

SCT (Silicon Strip)

Barrel: 2112 modules Endcap: 2 x 988 modules 4088 modules

One module: 2 layers x 768 channels Total: ~ 6.000.000 channels

Channel size: 80µm x 120 mm 16μm x 580 μm Resolution:

Hits per track: Barrel: 4 Endcap: 9

SCT EndCap

Fully assembled SCT Barrel

- Optical online monitoring of the SCT geometry using a grid of interferometers
- Distance between point close to the optical fiber end and retro-reflectors mounted in the SCT.
- Single FSI Grid Line Interferometer has a precision below 1µm!
- Entire Grid shape can be determined to better than $10\mu m$ in 3D.
- FSI is beautifully complementing the offline track alignment wherever the latter is not sufficiently sensitive lowest modes of global distortions!
- It also provides quasi real-time response to time dependent deformations.

RT relation has to be determined

Florian Bauer, 4/9/2006, LHC Alignment Workshop

TRT Barrel detector

8

Insertion of SCT Barrel and TRT Barrel into ATLAS final position 10 days ago Alignment problems are getting closer....

Initial ID geometry knowledge (before alignment)

Uncertainties on the position of the 7 Subdetectors relative to each other:

translation: several mm, rotation: several hundred μrad

Uncertainties on modules position within the subdetectors:

	х	У	\mathbf{Z}	α	β	γ
Pixel Barrel modules	0.030	0.030	0.050	0.001	0.001	0.001
Pixel Endcap modules	0.030	0.030	0.050	0.001	0.001	0.001
SCT Barrel modules	0.150	0.150	0.150	0.001	0.001	0.001
SCT Endcap modules	0.100	0.100	0.150	0.001	0.001	0.001

(displacements in **mm**; rotations in **mrad**)

TRT1.0mm in R0.5mm in the orthogonal plane to R

Initial Misalignment

- misalign detector elements on simulation level
- initial misalignment in the order of 1mm to 30 µm has great impact on tracking performance
- misalignment on reconstruction level produces same results

Software requirements

- ID consists of 1744 Pixel, 4088 SCT and 124 TRT modules
 => 5956 modules x 6 DoF ~ 35.000 DoFs
 This implies an inversion of a 35k x 35k matrix
- Use calibration as X-ray and 3Dim measurements to setup best initial geometry
- combine information of tracks and optical measurements like FSI.
- Reduce weakly determined modes using constraints:

vertex position, track parameters from other tracking detectors, Mass constraints of known resonances, overlap hits, modelling, E/p constraint from calorimeters, known mechanical properties etc.

- ability to provide alignment constants 24h after data taking (Atlas events should be reconstructed within that time)
- And last but not least work under the ATLAS framework: ATHENA

Many approaches

- Global χ^2 minimisation (the 35k x 35k inversion)
- Local χ^2 minimisation (correlations between modules put to 0, invert only the sub-matrices, iterative method)
- Robust Alignment (Use overlap residuals for determining relative module to module misalignment, iterative method)

Furthermore work done on:

- Runtime alignment system (FSI)
- B-field

μ –Spectrometer

(15)

MDT chambers

Barrel: 708 MDT chamber Endcap: 544 MDT chambers 1252

~400.000 readout channels

Used gas: ArCO₂ (93+7%) => RT relation have to be determined. Intrinsic resolution of a readout channel: 80μm

Atlas Barrel Spectrometers

Installation of a Barrel MDT

Endcap segment ready for the pit (5 MDTs) 16

Atlas muon spectrometer

Muon track will be measured with 3 drift tube chambers (~18-20 layers)

Requirement:

10% tranverse momentum resolution on 1TeV muon:

Track curvature : 400-700 μm 10% resolution : 40 μm

When Toroid is put on, chambers will move by severall mm. => Optical alignment needed. Furthermore hourly geometry changes expected.

Main optical alignment ingredients

Florian Bauer, 4/9/2006, LHC Alignment Workshop

Barrel reference system Mounted to toroid coils

Precise gluing of sensors on chambers via platforms and extensions

Florian Bauer, 4/9/2006, LHC Alignment Workshop

Implementation

Praxial/Axial mounted on chamber

Monitored endcap alignment bar

Layout, integration (several hundred drawings)

Alignment Device Positions

Calibration: knowledge of x,y,z, θ x, θ y, θ z for all platforms, extension plates, alignment bars sensors, leds, targets with respect to the tubes/wire.

Many sites involved: Alignment sites + 13 chamber construction institutes.

Alignment bar under XMM (Freiburg)

Projective calibration (Nikhef)

Florian Bauer, 4/9/2006, LHC Alignment Workshop

Positionning tools (BML chamber)

Praxial calibration (Saclay)

Florian Bauer, 4/9/2006, LHC Alignment Workshop

Alignment Software requirements

- Describe detector taking into account calibration for all optical elements, chambers. Description is 80% of the alignment software job.... Visualisation tools vital.
- Ability to combine optical information with straight or High Pt tracks
- Describe the 9 chamber deformations parameters: in the fit 6 + 9 DoFs per chamber.
- Handle up to 10.000 DoFs in the Barrel and roughly the same in the Endcap
- Run online (1 correction per hour) with a latency of 24h.
 => robust algorithms, automated dataflow, monitoring, use of Databases as IO

Today we have 2 alignment softwares: ASAP describing the Barrel alignment AraMyS describing the EndCap alignment

ASAP: uses iterative χ^2 fit, segmentation into sub-alignments foreseen AraMys: Minuit, segmentation into sub-alignments

Chain fully implemented at the H8 testbeam. Online mode planned.

ASAP/Aramys very precise description of sensor positions in the detector. 80% of the coding job is description.

Florian Bauer, 4/9/2006, LHC Alignment Workshop

Straight and High Pt tracks

Straight and High pt tracks are used to align:

- (1) Online for optically unconnected chambers
- (2) Muon Barrel to Endcup (3) Inner tracker to Muon spectrometer
- (4) Cosmics (5) Beam halo (6) Toroid field B=0 straight tracks

For cases (1)-(3) complex and automated dataflows to be managed, use of Tier2 center in Munich, ~50 Pcs running online

Conclusion

- Installation and validation of the Muon hardware alignment components on the way
- Muon: optical alignment software exists and validated at H8 test-beam
- Muon straight and High Pt track alignment still under development
- Inner tracker alignment: many algorithms exists today
- Validation in the H8 testbeam done

Between ATLAS Inner Tracker and Muon Spectrometer many synergies can be gained !

This should be even more true on LHC level !

