

Alignment Challenge @ CMS

Martin Weber RWTH Aachen

1st LHC Detector Alignment workshop CERN 4th September 2006

<u>Part II</u> Alignment

Part III The Challenge

Part I:

CMS

http://cern.ch/Martin.Weber

3

The CMS experiment

Compact: 1/8 ATLAS m³ Muon: Large, precise! Solenoid: 4T @ 4K

Pixel-Vertexdetector

Silicon Strip Tracker

Hadronic Calorimeter Electromagnetic Calorimeter

CMS Muon System

Barrel station: Drift tube ≈ 200 µm σ_{single} $\sigma_{\text{position}} \approx \, 100 \ \mu\text{m}$ 1 mrad \approx σ_{angle} Endcap: Cathode Strip Chambers ≈ 200 µm σ_{single} 10 mrad \approx σ_{angle} **RPC**: $\Delta \eta \propto \Delta \phi \approx 0.1 \times 5/16^{\circ}$ 250 Drift chambers 468 CSCs 360+252 RPCs

Myon system shrinks by 0.5 cm (barrel) and 1 cm (endcap) with field on!

CMS Silicon Strip Tracker

CMS Pixel Detector

Barrel layers

•2007 pilot run: few modules only •From 2008: r=4.4cm 7.3cm 10.2cm •1200 modules • η < 2.4 (collision centered) • η < 2.2 (collision 1 σ displaced)

Endcap disks

- •r=6cm...15cm
- •700 modules
- •rotate endcap petals by 20° for lorentz angle

General layout •active area ~ 1m² •dimensions: 100 cm x 30 cm •66*10⁶ channels •pixel size: 100 μm (rφ) x 150 μm (z)

http://cern.ch/Martin.Weber

Part II:

Alignment

http://cern.ch/Martin.Weber

8

Misalignment is due to

- Precision of assembly
- Stress from magnetic field or thermal stress
- Changes due to humidity and gas evaporation (from carbon fiber support)
- Misalignment will be time dependent!

G. Steinbrück, Tue 10:00

- Ideal geometry
 - No misalignment
- Short-term (<1 fb⁻¹)
 - First data taking
 - Hardware alignment used
- Long term (1-5 fb⁻¹)
 - First alignment with highstatistics tracks, for first physics analysis
- Final alignment
 - Do not deteriorate detector res.

Alignment is...

Estimation of

- Sensitive detector position, orientation (6 parameters)
- + ... module bending ... magnetic field ... material budget ...
- Different approaches considered (time / method)
 - Assembly knowledge (Muon, pixel, strip) NOW
 - Knowledge of ideal geometry, assembly precision
 - Hardware alignment (Muon: MA, strip: LAS) PRE-CO
 - Laser, LED, CCD, proximity & tilt sensors
 - Track based alignment (Muon, pixel, strip) COLLISIO
 - $Z \rightarrow \mu\mu$ as single muons, $Z \rightarrow \mu\mu$ with mass constraint, cosmics, beam naio, ...
- Different databases, measured objects, precision, correlations...
 - Combining measurements will help in the beginning

B. Wittmer, Tue 11:15 I. Vila, Tue 14:00 P. Arce, Tue 14:25

-P. Schilling, Tue 14:

- Linear least-squares (LLS): Application of Gauss-Markov Theorem
 - Gives best linear unbiased estimators (BLUE) of parameters (best = minimal MSE)
 - Measurement function $\vec{f}(\vec{p})$ (where \vec{f} are the hit coordinates, 1D, 2D,, 6D)
 - Depending on unknown parameters \vec{p} (track parameters, alignment parameters)

- Linearize function
$$\vec{f}(\vec{p}) = \vec{f}(\vec{p}_0) + A(\vec{p} - \vec{p}_0) + O((\vec{p} - \vec{p}_0)^2)$$
, $A = \frac{\partial \vec{f}}{\partial \vec{p}}_{\vec{p} = \vec{p}_0}$

- Write a χ^2 -function, minimize difference between prediction \vec{f} and measurement \vec{m} :

$$\chi^{2} = (\vec{f}(\vec{p}_{0}) + A(\vec{p} - \vec{p}_{0}) - \vec{m}) W(\vec{f}(\vec{p}) + A(\vec{p} - \vec{p}_{0}) - \vec{m}), \quad V = cov(\vec{f} - \vec{m}), \quad W = V^{-1}$$

- Minimize by computing

- In a clever algorithm, track parameters are not fitted $\rightarrow A^T W A$ has size NxN (N = Number of alignment parameters)
- Brute force solution: Inversion or Diagonalization

$$\tilde{\vec{p}} = \vec{p}_0 + \left(A^T W A\right)^{-1} A^T W \left(\vec{m} - \vec{f} (\vec{p}_0)\right)$$

Part III:

The challenge

http://cern.ch/Martin.Weber

12

- Estimate ~6 parameters per strip tracker module
 - CMS strip tracker is built of 15148 modules \rightarrow alignment parameter covariance matrix E or matrix to be inverted $A^T W A$ are sized (15148*6)^2 = 90888^2
 - Store E or $A^T W A$ in memory (~32 GB for double precision \rightarrow sparse storage)
- Experience from ATLAS (COM-INDET-2004-011)
 - Matrix inversion and Diagonalization algorithms break down at ~50000 parameters due to CPU time limitation and floating point precision:

Strip tracker: The challenge of constraints

- Simplest: Layer rotation by angle a
 - Distorts p_T spectrum and inv.
 mass
- A lot more higher modes...
- High global correlation observed by using single tracks without any constraint
- Use constraints (under study)
 - Laser Alignment System
 - $Z \rightarrow \mu \mu$ with Z mass (helps)
 - Cosmics (helps a lot in the barrel)
 - Beam halo (useful for endcaps)
 - Implement global & survey constraints in χ^2
- Best use of all available data!

RWIT

Alignment of barrels, layers, rods: Example using $Z \rightarrow \mu \mu$ with mass constraint, cosmics, survey information

http://cern.ch/Martin.Weber

Example from Strip Tracker: The challenge of reconstruction

- If it gets to high precision everything matters:
 - Verified ideal detector geometry description (position/orientation)
 - Verified material budget (more detailed description in new CMSSW geometry)
 - TEC Sensor topology (wrongly assumed trapezoidal instead of radial topology)
 - Module strip layout (wrong values in current CMSSW)
 - Two sensor module layout (sensor mask did not take into account 100 µm gap between sensors)
 - The Great Unknown (something we have neglected or not thougt about)

RNTH Physics AC-

http://cern.ch/Martin.Weber

Muon system: The challenge

Challenge for Pixel tracker

- Pixel barrel standalone alignment with 504 / 750 modules ($Z \rightarrow \mu \mu$)
- HIP algorithm
- Resolution
 ≈ 25 µm
- CMS note 2006/018
- Challenge: Align all modules, include FPix

Physics AC-

The challenge of putting it all together: Alignment data flow

- Many challenges in front of CMS
- Some are more challenging than others, but all need to be met
- Alignment only possible after many other detector effects are understood
 - Non-uniform magnetic field, material budget, time dependent effects, algorithmic challenge (number of parameters), position & orientation of sensors, module topology, combining different alignment data sources, …

Alignment is "The Art of Calibration"

Thank you for your attention

