04.09.06, LHC alignment workshop

C. Kleinwort, DESY

ZEUS/H1 Alignment Experiences

Overview

- H1 (C. K.)
 - H1 Trackers
 - History
 - Alignment Overview
 - Repro2k
 - HERA I Central tracker alignment and calibration
 - Constants management

- ZEUS (R. Mankel)
 - ZEUS tracking system
 - Micro Vertex Detector
 - Laser Alignment
 - Cosmic muon alignment
 - ep collision alignment
 - Physics application $\tau(D^+)$

Summary

04.09.06, LHC alignment workshop

H1 Trackers

C. Kleinwort, DESY

04.09.06, LHC alignment workshop

History

- Designed, built 15-20 years ago, mainly drift chambers ("analog") ⇒ tracking optimization
 = alignment (geometry) ⊕ calibration (time to distance)
- Later Silicon Strips added ("digital")
- Usually small group of people per tracker for installation, operation, maintenance, online software and calibration, offline software and calibration and alignment ⇒ priorities in this (decreasing) order
- At end of HERA-I coordinated (al.+cal.) effort (99-01) for reprocessing of HERA-I data, concentration on central trackers ("Repro2k")

Alignment Overview – Data sets

- Survey from construction, installation
- Tracks from ep interaction
- Tracks from cosmic ray muons ("cosmics")
 - Dominant source for high p_t (several GeV) tracks, 10-20 Hz in central tracker
 - Easy possible to vary detector parameter (B, E, ..)
 - Different phase space (ϕ , θ , z_0 , dca, flight (time) direction)
 - At begin: difficult, problematic
 - At end: opportunity for cross checks

Alignment Overview - Methods

Internal

- Cosmics at B=0, relative alignment of detector parts: forward muon, forward tracker, IRON
- External (to central tracker)
 - Cosmics, use extrapolated central tracks: IRON
 - Scattered e, use event vertex, central tracks: backward tracker cross check with kinematic constraints (E/p, ..)
 - ep tracks, compare track parameter: forward tracker
 - Any track, Kalman filter with vertex, central space points: forward/backward silicon

Combined

 Any track, millepede, alignment and calibration: central silicon tracker (CST), Jet (CJC), Z chambers (CIZ/COZ) 04.09.06, LHC alignment workshop

C. Kleinwort, DESY

Central Trackers

- Calibration and alignment directions: subdetector
 - In details: local corrections, stable
 - As whole: stability (temperature, pressure, ..)
- Rφ calibration and alignment: CJC/CST
 - R¢ measurement in CJC, CST
 - Millepede setup
 - Millepede operation
- ZS calibration and alignment: CIZ/COZ/CST
- CJC charge calibration: ZS, dE/dx
- Conclusion
- Refinements

04.09.06, LHC alignment workshop

C. Kleinwort, DESY

CJC R¢ measurement (1)

- Drift distance from time
 - d = (t-t₀) v_d + R_{iso} (1-1/cos β), $\beta = \varphi_{track} \alpha_{lor} + \pi/2$
- Point(s) in Rφ from drift distance and direction, wire pos.
 - (x,y) = (x_{wire} , y_{wire}) ±d ($\cos \alpha_{lor}$, $\sin \alpha_{lor}$), sign by pattern recognition

CJC R¢ measurement (2)

- Drift velocity and lorentz angle depend on
 - Electrical, magnetic field \Rightarrow spatial variations
 - Gas composition and density \Rightarrow variations with time (P_{atm}, T)
- Calibration, alignment correlation: complex example
 - Gravitational sagging of cathode wires larger than for anodes \Rightarrow as function of ϕ and Z for the 2 drift directions differences in

- Drift velocity v_d(E) _____ cathode
- − Calibration with common v_d give different t_0 for drift sides \Rightarrow equivalent to wire displacement in drift direction (up to 100 µm)
- Due to different ϕ , Z distribution different for cosmics, ep tracks

CST R¢ measurement

- Position on ladder (2*3 daisy-chained sensors)
 - COG of (p-side) strips above noise
 - 3fold ambiguity resolved by external Z measurement (track)
 - sensor position (on half ladder) from microscope survey
- Half ladders positions (rigid bodies) in space

CJC/CST R¢ millepede setup (1)

Local track model

- Residuals to initial track fit as measurements
- Cosmic track halves together (reverse flight time for upper)
- B>0: Parabola + 1%X₀ scattering (angle) between CJC/CST
- B=0: Straight line
- Global (alignment) parameter
 - CJCs
 - rigid body (except Δz) + twist of end walls (\triangleq curvature offset)
 - anode wire staggering, electrostatic deflection, gravitational sagging
 - corrections to anode wire position per layer (112)
 - CST
 - rigid body (except Δz) per half ladder (320)

CJC/CST R¢ millepede setup (2)

- Global (calibration) parameter
 - v_d , α_{lor} , t_0 per CJC (\Rightarrow online calibration)
 - v_d correction per cell half, t_0 per cell (180+90): E(ϕ), HV problems, temperature gradient
 - v_d correction per layer half, t_0 per layer (112+56), E(R)
 - t₀ correction per Flash ADC (330): cable length, electronics
- Additional parameter for special studies
 - Isochrone radius, non linearities, ..
- Constraints for local corrections
 - Average (weighted) is zero
 - Easy to switch on/off set of parameters

CJC/CST R¢ millepede operation (1)

• Iteration loop: 3fold

- Internal millepede iterations
- Rerun millepede with last corrections
- Rerun track reconstruction with last corrections
- Samples used
 - Several 10k tracks
 - Initially cosmics
 - Large distance to ep interaction point (dca, Z₀)
 - Small curvature
 - As cross check ep
 - Small distance to IP
 - Large curvature
 - Full ϕ coverage !
 - Finally cosmics+ep

CJC/CST R¢ millepede operation (2)

- Lesson 1: CST as (absolute) reference
 - Large tilt of wire planes due to bad initial CST alignment ⇒ allow global CJC/CST misalignment
 - End wall twists incompatible with installation survey \Rightarrow give up
 - Use CJC2 and end wall survey of position bores ('89)
 - Get twists from B=0 cosmics
 - ♦ Realign CST half ladders ⇒ 40-60 µm 'shrinkage', radial COG ?

deviation bore position

CJC/CST R¢ millepede operation (3)

- Lesson 2: B=0 vs B>0 cosmics
 - Twists from B=0 compatible with installation survey, wire positions with end wall survey
 - Inconsistent alignment with B>0 cosmics

Include magnetic field inhomogeneities (few %) in track model

- Lesson 3: ep vs cosmics tracks
 - Low p_t tracks need different t₀ than cosmics
 (have different β distribution: curvature*R vs dca/R)

Fit isochrone radius in addition

• CJC track parameter resolution improved by factor 1.5 (at high momenta)

CIZ/COZ/CST ZS millepede setup

- Local track model
 - Straight line
 - ZS space points, need R φ track parameters for corrections (arc length vs radius, polygon correction)
- Global (alignment) parameter
 - CIZ, COZ as rigid body (except $\Delta \phi$)
 - Wire position in z (160)
- Global (calibration) parameter
 - v_{d} , t₀ per wire (320)
- CST
 - As reference in overlap region, else fixed COZ
 - Internally aligned with cosmics

CIZ/COZ/CST ZS millepede operation

Space points

 Some effort to get all the corrections right: isochrone, polygon, flight time (cosmics vs ep)

• Reference: CST vs COZ

- Convergence for both cases
- Inconsistent results, CST likes to stretch chambers by 0.5‰
- Fine with "CST shrinkage" from Rφ alignment
- CIZ/COZ single hit resolution improved by factor 2

CJC charge calibration: ZS, dE/dx

• From charges Q_{\pm} measured on both wire ends

 $- Z = L (Q_{+} - gQ_{-})/(Q_{+} + gQ_{-}), \Delta x dE/dx = G(Q_{+} + gQ_{-})$

- Calibration algorithm (V. Blobel)
 - Simultaneous fit of wire length (L), relative (g) and absolute gain (G) for 2640 wires
 - Nonlinear in relative gain \Rightarrow constrained parabola
 - Central silicon tracker, Z chambers as reference
- Surprise
 - Wire length varies with total charge

Traced back to wrong FADC response function in online code

Conclusion

Should have

- defined first a robust scale
- aligned, calibrated all involved subdetectors simultaneously
- done both projections ($R\phi$, ZS) together

Refinements (Rφ) 2006

• CJC

- − Calibration: account for B(R,Z)
 ⇒ $α_{lor}(R,Z)$, $v_d(R,Z)$
- Improved isochrone model inspired by simulation (GARFIELD) R_{iso}(β,B)

♦ Factor 2 improvement in total

CST

 Replace microscope sensor survey by alignment with data

 \Diamond 11 µm single hit resolution

Constants management

- Database
 - Design
 - Implementation
 - Statistics
- Online calibration

Database

• Design

- Records can't be changed or deleted, only new versions added
 ⇒ possible to go back to snapshot at any point in time
- Meta information in 'data dictionary', some mandatory
- 1 master for writing, read only satellites (external sites, ..)
- No write restrictions, but detailed bookkeeping

Implementation

- Selfmade middleware (Fortran, C, SQL, PL/SQL)
- User gives command (string), gets pointer into (BOS) memory
- Master in Oracle (7,8,9) RDB, satellites in flat (FPACK) files
- Statistics (master) for last 9 years
 - 14M user job connections, 0.5M writing 3.5M records (2.3GB)

Online calibration

- Constants defined per run (up to 1h)
- Online processing of data
 - On many nodes in parallel
 - Using offline code
 - Putting special monitor records into data stream (selected tracks, .., millepede matrix/vector)
- Monitor records
 - Collected by special job
 - Used to calculate new calibration constants after run end
- Database records
 - Updated for significant changes
 - Fed back to online processing

The ZEUS Tracking System

- ZEUS tracking system was significantly extended during HERA luminosity upgrade (2000/01)
 - Micro-Vertex Detector (MVD)
 - □ forward Straw Tube Tracker (STT)
- Initial HERA-II running suffered from unstable machine operation & harsh background conditions
 - no real commissioning possible
- After introduction of additional experiment shielding in 2003, the first "serious" HERA-II data-taking proceeded from Nov 2003 (start of "2004 run")
- 2005 dataset (142 pb⁻¹) recently reprocessed with improved MVD alignment

C. Kleinwort, DESY

The Micro-Vertex Detector (MVD)

BOTTOM MICRO VERTEX DEIECTOR

The forward section:

- 4 wheels
- each composed of 2 layers of 14 Si detectors
- in total 112 hybrids, 50k channels

The barrel section:

- 30 ladders
- each composed of 5 modules of 4 Si detectors
- in total 300 hybrids, >150k channels

The rear section:

- Cooling pipes and manifolds
- Distribution of FE, slow control and alignment cables

C. Kleinwort, DESY

The Layout of the MVD Barrel

- Major part of azimuthal acceptance covered by three cylinders of ladders (→ six measurements per track)
- Optimal use of available space between beam pipe & CTD

Alignment of the ZEUS MVD

- Main drift chamber (CTD) is a homogeneous, wellunderstood tracking medium → focus on MVD
- From survey, positions of sensors within ladders are expected to be known within 5 µm. Absolute positions & orientations of ladders & wheels, however, are less well known.
- Main sources of in-situ MVD alignment are
 - MVD laser alignment
 - alignment with cosmic muons
 - alignment with tracks from ep collisions

Laser Alignment

- 5 laser beams (780 nm, 5 mW), 7 sensors per beam
- Double-sided sensors measure position to ~10 μm

Purpose:

- monitor global alignment and possibly distortions of MVD
- identify unstable conditions

C. Kleinwort, DESY

MVD Laser Alignment (cont'd)

- Due to its sensitivity, laser alignment records effects from ramping of HERA magnets during injection
- During data-taking conditions, laser alignment shows high stability of MVD/CTD geometry
- Important warning system

Alignment with Cosmic Muons

C. Kleinwort, DESY

- Advantages:
 - clean signature. Achievable samples ~100k events (1-2 weeks of dedicated running)
 - tracks passing through whole height of detector \rightarrow typically 6 hits (r ϕ)+6 hits (z) on track
- Method:
 - for each ladder in barrel, determine residuals of hits with tracks (fitted under exclusion of the very hits of this particular ladder)
 - local least squares fit determining 6 alignment parameters (3 shifts + 3 rotations) for ladder
 - apply for all ladders, iterate, combine with global alignment

C. Kleinwort, DESY

Alignment with Cosmic Muons (cont'd)

- Based on ~100k good cosmic tracks
- Considerable reduction of residual widths, down to ~50 μm
- Principal limitation:
 - ladders on sides of barrel are not well covered
 - forward wheels cannot be aligned at all

04.09.06, LHC alignment workshop C. Kleinwort, DESY Using Inclusive Impact Parameter Distributions to Check Alignment

- Study impact parameter with respect to beam spot → independent of vertex reconstruction
- Typical beam size at HERA 110 x 30 μ m
 - run-by-run beam spot to compensate movements
 - at LHC this may work even better (round beams)
- Inclusive selection of tracks (p_T>3 GeV) gives very clean impact parameter distributions
- Expectation (if perfect alignment):
 - narrow distributions for horizontal tracks
 - wider distributions for vertical tracks

 $\phi=0^{\circ}$ Beam spot projection

narrow

track

φ=90°

Beam spot projection wide

C. Kleinwort. DESY

Impact Parameter "Radar Map"

at level of cosmic alignment

- significant excess in impact parameter resolutions in certain azimuth ranges
- correlation with ladders that are least accessible to cosmics alignment
- need alignment method that covers whole detector

r: visible impact parameter resolution [µm]

Alignment with ep Collisions

- Tracks from ep collisions form the largest quantitative basis for alignment
 - select about 1 M tracks per ~10 M ep events
- Compared to cosmic muon alignment, far less redundancy at MVD level (only ~6 hits instead of ~12 per track)
 - compensate this by using beam spot and CTD segment as additional constraint
 - → not feasible to use unbiased residuals. Must take correlations into account
- High granularity of alignment parameters
 - 2 shifts + 3 rotations per individual sensor
 - about 3000 alignment parameters
- Simultaneous global fit of all track and alignment parameters
 - millions of free parameters
 - use fitting engine "millepede" (by V. Blobel)

Thanks to Volker Blobel for access to his program & his advice

C. Kleinwort, DESY

The ZEUS ep Alignment Factory

 Actual fit ("aligner") takes 10-20 minutes 04.09.06, LHC alignment workshop

Alignment Constants: Snapshot

- Clear correlations of modules within ladder
 - no evidence for significant shifts within ladder
 - high precision of construction & survey
- rφ: indications for ladderlevel rotations (sub-mrad)
 - possibly some indications of sag, twist or warp effects?
- Typical alignment accuracy ~20 μm

Note: error bars exclude multiple scattering

Hit Residuals

 Significant improvement from ep track alignment in critical areas

04.09.06, LHC alignment workshop C. Kleinwort, DESY Impact Parameter Resolution After ep Track Alignment

270

- Considerable improvement from ep track alignment with respect to cosmics alignment
- Visible impact parameter resolution generally comparable to MC

04.09.06, LHC alignment workshop

C. Kleinwort, DESY

 $D^+ \rightarrow K^- \pi^+ \pi^+$

ZEUS 2005 reprocessed with ep alignment.

Submitted to ICHEP06 conference.

Summary

- H1, millepede
 - Need scale, reference
 Robustness more important than nominal resolution
 - Be as global (subdetectors, projections together) as possible Explore the different systematics (more but uncorrelated)

• ZEUS, MVD

- Laser alignment to monitor stability
- Initial alignment with cosmics
- Final accuracy from ep collision tracks and global fit
- Beam spot and impact parameter important to constrain and monitor alignment