BaBar Si Tracker Alignment

David Nathan Brown, LBNL

Representing the BaBar SVT alignment group

The BaBar experiment
The BaBar Si Tracker alignment procedure
Alignment procedure validation
Results

Lessons learned

PEP-II and BaBar

David Brown

Track Momentum on the $\Upsilon(4S)$

Scattering (material) largely dominates over point (hit) resolution in impact parameter resolution

David Brown

BaBar Physics Goals

- Observe CP violation in B system
 - Time-dependent mixing (e.g. sin2β)
 - ★ $\lambda_z \sim 260 \ \mu$ m, σ_z vertex ~ 180 μ m, ⇒ 20 μ m point resolution
- PDG-competitive measurement of B, τ lifetimes
 - Control average alignment systematics to ~ 1 μ m (0.5%)
- No B_s mixing, tertiary charm vertex separation, ...
 - Modest requirements on material, resolution

10

- Radii from 3.3 to 15 cm
- 'Lampshades' in layers 4 + 5

30

- Double sided readout
 - ♦ 90° strips
 - ✦ Kapton fanouts in active region
- ~2% X_0 total at normal
 - ♦ 1% X₀ Be beampipe
- No hardware alignment

David Brown

5

BaBar SVT

Wafer Alignment Description

- Sensor local coordinates
 - + u≈φ, v≈beam, w≈radial outward
- 6 alignment parameters
 - ✦ Deviation WRT nominal
 - 3 translations δu δw δv
 - + 3 (small) rotations $\alpha u \alpha w \alpha v$
- Total system has 6 redundant Global alignment DOFs
- Internal DOFs
 - Charge drift asymmetry (=0)
 - Lorentz shift (estimated)
 - Non-planar distortions

BaBar Alignment History

- BaBar design and construction: 1995→1999
 - ✦ Alignment is considered (overlaps) but not studied
- First data and commissioning in 1999
 - Used Optical Survey wafer alignment + cosmics
- 1st Alignment procedure development 1999→2000
 - ♦ Based on (primarily) $e^+e^- \rightarrow \mu^+\mu^-$ events
 - ♦ 1.5 FTE for development and operation
 - Procedure was manpower, cpu and data intensive
 - \star ~1 month turnaround time
 - ✦ Visible systematic errors remained
 - ★ Early BaBar physics results were not compromised!
- Complete rewrite of alignment procedure 2001→2002
 - ✤ 3 FTE development effort over 1 year
 - ✦ Separate operations effort of 0.5 FTE
 - Designed coherently with a new BaBar Data Model
 - ✦ Deployed in 2002, we are still using this procedure today

BaBar τ lifetime in year 2000

Alignment Design Principles

• Combine complementary constraints

- ✦ Use lots of tracks to cover all wafer DOFs
- Use different event triggers and track geometries to balance systematic biases
- ✦ Relate wafers across the detector to control global distortions
- Incorporate lab-based optical survey information
- Select data to provide uniform constraints
 - Make detector coverage more uniform
 - Select events uniformly over (short) time period
 - ✦ Equilibrate statistical errors
 - Minimize statistical correlations between wafers

Global Distortions

- Small relative changes between adjacent wafers that add up coherently across the detector
 - ✦ Residuals work 'locally'
- Can introduce significant physics bias
- Choose alignment constraints which control these

	ΔR	Δφ	ΔZ
R	Radial expansion (distance scale)	Curl (charge asymmetry)	Telescope (COM boost)
φ	Elliptical	Clamshell	Skew
	(vertex mass)	(vertex displacement)	(COM energy)
z	Bowing	Twist	Z expansion
	(COM energy)	(CP violation)	(distance scale)

Overlaps

- Active Si overlap between adjacent wafers in the same layer
- Small gap between overlapping wafers
 - ✦ Constrains adjacent wafers
 - Not as effective in hex geometry
- Overlaps cumulatively provide a circumference constraint
 - Relies on precise knowledge of wafer size
 - Constrains radial expansion, clamshell distortions

Small fraction of tracks

Between 1% and 3%

- High-momentum tracks (> 1Gev)
- Relates opposite side wafers ⇒ constrains *telescope distortion*
- Off-axis ⇒constrains *twist, elliptical distortions*
- Low rate, non-uniform illumination

Pair Fit

- Fit 2 tracks from e⁺e⁻→µ⁺µ⁻ (and e⁺e⁻→ e⁺e⁻) simultaneously
 - Constrained to a common origin
 - Constrain Σ momentum to 'known' CM 4-momentum
 - \star Scale errors for beam uncertainties
 - \star Implemented in the BaBar Kalman track fit
- Provides pair-constrained residuals

Not just a mass-constrained vertex fit!

- Constrains *curl, bowing, and skew distortions*
- Technique can work for other track pairs (ie $\psi \rightarrow \mu^+ \mu^-$)
- Depends on initial beam parameter knowledge

Optical Survey

- Use combination of Module Survey (lab bench) + Assembly Survey
- Constraint of wafers within a module complementary to tracks
- Constrains Z expansion distortion

David Brown

Survey Constraint

Compute 'survey to current' transform using reference wafers
 Minimize difference between position of fiducials on the wafere

- Minimize difference between position of fiducials on the wafers
- Predict position of 'test' wafer position in 'current' alignment
- Compute $\Delta \chi^2$ = difference between current and survey position
 - Multiply out-of-plane errors X 10 to accommodate motion since survey
- Add survey $\Delta \chi^2$ to track residual χ^2

Outer Tracking Constraint

- Tracks are split at boundary
 - Each half fit separately
- Outer track fit used to constrain the inner track fit
 - Can select which parameters to propagate
 - Improves precision while controlling propagation of outer tracker systematics
 - Standard feature of BaBar Kalman track fit
- μ-pair + cosmic (high p)
 - Constrain only curvature
- Isolated high-P hadrons
 - Constrained to full outer track fit (5 parameters)
- Keeps relative (global) alignment from drifting

Alignment Data Reduction

A dedicated sample is selected during reconstruction

- + μ pairs, cosmics, prescaled hadronic events with high P tracks, ...
- ✦ Written to a dedicated stream (file)

From ~ 2 days accumulation we extract an alignment sample

- Events are prescaled by type and polar angle coverage
 - \star Timescale driven by cosmics
- Only selected tracks are kept, all other data is removed
 - \star Outer tracker info is kept as a fit constraint, reduces track size by 1/3
- ✦ Hits are prescaled for uniform coverage, selected hits are flagged
 - \star Defines fixed selection of hits used across iterations
 - ★ Greatly reduces statistical correlation between wafers

Customizations are built in to the BaBar Data Model

David Brown

Alignment Iteration

Iteration factorizes the alignment problem

- No need for huge matrix inversion (6X6 vs 1440X1440)
- No need to compute distant derivatives
- 1 iteration = loop over all wafers
- Minimize $\Sigma \chi^2$ (closed form) for each wafer
 - Sum $\Delta \chi^2$ + associated derivatives wrt alignment parameters
 - ✦ Solve for the change in this wafers alignment parameters
- Wafer positions are updated only after a full iteration
 - Parallelizable (if wall-clock time were an issue)
- Initialize using previous, survey, nominal, test configuration, ...
- Tighten residual cuts after partial convergence
 - Reduces the effect of outliers without biasing alignment
 - Requires re-writing alignment dataset (reflagging hits)
- Convergence = when wafers stop moving
 - $\Delta \chi_p^2 = (\Delta P/\sigma P)^2/6 < 0.01$ for every wafer in 1 iteration
 - ✦ ~100 iterations, <24 hours real-time (single processor)</p>

Alignment Convergence

Alignment Operations

Alignment computed every 2 weeks (or as necessary)

- Fully automated (except validation!)
- ✦ 2-day turnaround
- ✦ Upload to database only if changes are significant (by a human)
- So far we have ~40 alignment periods, separated by
 - Detector interventions
 - Humidity effects
 - \star Carbon fiber is hygroscopic
- Detector has been stable for the past ~2 years

History of outer layer relative radial position vs Z for 2001→2003

http://dnbmac3.lbl.gov/~brownd/align ment/SvtChange_dr

Global Distortion Tests

Validate the procedure against global distortions

- Small, coherent relative wafer displacement
- Use undistorted MC sample composed as data
 - + Cosmics, μ-pairs, hadronic decays, ...
- Align starting with a distorted initial condition

+ 50 μ m scale, smooth dependence on either R, ϕ , or Z

	ΔR	Δφ	ΔZ
R	Radial expansion (distance scale)	Curl (charge asymmetry)	Telescope (COM boost)
φ	Elliptical	Clamshell	Skew
	(vertex mass)	(vertex displacement)	(COM energy)
Z	Bowing	Twist	Z expansion
	(COM energy)	(CP violation)	(distance scale)

David Brown

Example: Elliptical Distortion

100 Iterations

Apply 0.1% elliptical distortion (~50µm amplitude in layer 5)

Z Scale Validation

The Explanation: Wafer Bowing

Wafers are not planes (or cylinders)!

3-D Interferometric survey of 1 module before installation

LHC Detector Alignment Workshop

μ-pair Miss Distance

- Average variation of <2 μ m in Σd_0 , <10 μ m in Δz_0
- With 10X standard alignment sample, structure is seen
 - ✦ More general non-planar distortions

τ Lifetime Revisited (2005)

 "The peak to peak variation of the reconstructed decay length vs φ is consistent with just natural lifetime fluctuations."

BaBar's sin2 β History

Si Alignment Lessons Learned

Detector Design

- Prioritize material, resolution, stability
- ✦ Simulate alignment to optimize overlap, layer coverage, …

Construction

- ✦ Make Lab-bench measurements of all components
 - ★ Survey aggregate sensor units (module, ladder, ...) in 3-D
 - ★ Measure material properties of all active-region components
 - \star Si thickness, material of hybrids, location of masking, ...

Assembly survey as a cross check (if practical)

• Software Design

- Data model support for alignment
 - ★ Custom event selection, hit flagging, parameter constraints

✦ Kalman track fit alignment-specific features

- \star Pair fit, parameter constraint
- ✦ Allocate adequate manpower to alignment development

Operations

✦ Allocate dedicated processing and storage for alignment

Lessons Learned (continued)

Procedure

- Accurately represents the true DOFs
 - ★ Consider non-planar distortions!
- Use complementary event types and external constraints
- Prescale events to create a uniform, consistent data sample
- Prescale and flag hits
 - \star Reduce statistical correlations
 - \star Consistent and stable χ^2 calculations
- ✦ Validate against realistic distortion scenarios

Don't get hung up on mathematical details

- ★ Any well-behaved, additive measure will probably work
 ★ Any minimization technique that converges will probably work
- Physics Use
 - Plan for providing an early (preliminary) alignment
 - Provide analysts with a misalignment estimate
- Be prepared for the unexpected!

Backup Slides

- Statistical (< 5% from alignment)
 - $\delta_{\text{in-plane}} < \delta_x/3$

$$\bullet \ \delta_{\text{out-of-plane}} \sim \delta_{\text{in-plane}} / \theta$$

- Systematic (no visible biases)
 - Roughly 3-times better than statistical on average

Pair Fit Results 140 0.61312-07 0.12528-04 Men Mean **Curvature** 200 RMS G. 1667E-03 RMS 0.73366-03 ¥/m 2/14 70.03 / 33 52.49 7 43 120 164.64 3,836 4 90.99 3.373 175 Contest Cons resolution ± 10-80060.07 0.37 288-07 -0.16608-04± 0.62128-03 Men Mea E: Sgr 0.14172-03主 0.33868-07 0.73778-03主 0.36978-03 510 150 100 improves >2 Single μ 125 orders of Pair Fit 80 100 magnitude! 60 75 **Constrains** 40 50 relative dip 20 25 angle 0 0 -0.05 0.05 -0.1 -0.05 0.05 (through 0 0 -**0**.1 0.1 0.1x 10⁻⁴ x 10 boost) ω Residual, Pair Fit ω Residual, Single Fit

David Brown

LHC Detector Alignment Workshop

Lab⇔Assembly Survey Comparison

- Compare at fiducials
 - Remove global DOFs
 <3μm in plane
 - ~1μm statistical
- ~20 μ m out of plane
 - ✦ ~10µm statistical
- Average these when used in alignment

+	+	
+	+	

David Brown

Event and Hit Prescaling

- Prescale events by category
 - μ⁺μ⁻, cosmic, overlap track, ...
- Prescale hits on each track
 - Uniformly populate wafers
 - ✦ Sample data period uniformly
 - Balance different event types
 - Eliminate statistical correlation between wafers

Flag selected hits

- The exact same hits are used to calculate χ² every iteration
- Can (anti-)select hits when validating
- Written into the data
- Overlaps are under-populated
 - ♦ 1.5% nominal overlap in layer 4

Iteration Control

🗖 SvtLocalAlignIterator_sagitta 🛛 🗸						
SVT Local Alignment Job Control						
Event Type	Histo Type	Initial Alignment				
🔶 Data	♦ ROOT					
🕹 Monte Carlo	НВООК	◆ User Specified				
Drift	Survey	lter_Sagitta/align_out24.dat				
Chamber	🕹 Don't Use					
Constraints	🔶 Use	User tcl Patches File				
m d0	Weights	Patches_V6_13022.tcl				
📕 phi0	v 1.0					
📕 omega	w 0.1	Input Collection				
z0	theta_u 0.1	From COLLECTION env var				
	theta_v 0.1	From User Specified tcl file:				
	theta_w 1.0	MiniReduced_V6_13022.tcl				
Survey File						
Default User Specified		Output Directory:				
V User Specified		iter_Sagitta				
Iteration Control Tight Residual and Chi Cut						
Max Iterations: 50	00	Residual (um) 250				
ChiSq Threshold: 0.0	ChiSq Threshold: 0.01					
First Iteration: 1		Chi				
	5.0					
Status: Running iteration 2.5 Wafers below threshold: 247						
Iteration Flapsed Time: 11:20						
Using Tight Cuts:						
Run Exit						

- Iteration is controled by tcl scripts with tk window
 - ✦ Parameters can be adjusted
 - ✦ Job progress is monitored
- Typical job converges in ~100 iterations and takes ~ 24 hours

μ-pairs after Curvature Correction

- Average distortion reduced to ~2 μ m in Σd_0 , ~10 μ m in Δz_0
- With 10X data, structure is seen!

Aleph VDET bonding error

David Brown