BaBar Si Tracker Alignment

David Nathan Brown, LBNL

Representing the BaBar SVT alignment group

- The BaBar experiment
- The BaBar Si Tracker alignment procedure
- Alignment procedure validation
- Results
- Lessons learned

PEP-II and BaBar

Track Momentum on the $\Upsilon(4S)$

 Scattering (material) largely dominates over point (hit) resolution in impact parameter resolution

BaBar Physics Goals

- Observe CP violation in B system
 - Time-dependent mixing (e.g. sin2β)
 - $\gg \lambda_z \sim 260 \ \mu m, \ \sigma_z vertex \sim 180 \mu m, \ \Rightarrow 20 \mu m \ point resolution$
- PDG-competitive measurement of B, τ lifetimes
 - Control average alignment systematics to ~ 1 μm (0.5%)
- No B_s mixing, tertiary charm vertex separation, ...
 - Modest requirements on material, resolution

- ☞ Radii from 3.3 to 15 cm
- 'Lampshades' in layers 4 + 5
- **Double sided readout**
 - 90° strips
 - Kapton fanouts in active region
- ~2% X₀ total at normal
- No hardware alignment

Detector wafer

Wafer Alignment Description

Geometric midplane ≡ w=0 Si Sensor W αu (0,0,0)

- Sensor local coordinates
 - **☞** u≈φ, v≈beam, w≈radial outward
- 6 alignment parameters
 - Deviation WRT nominal
 - $rac{1}{2}$ 3 translations $\delta u \delta w \delta v$
- Total system has 6 redundant Global alignment DOFs
- Internal DOFs
 - Charge drift asymmetry (=0)
 - Lorentz shift (estimated)
 - Non-planar distortions

BaBar Alignment History

- BaBar design and construction: 1995→1999
 - Alignment is considered (overlaps) but not studied
- First data and commissioning in 1999
 - Used Optical Survey wafer alignment + cosmics
- 1st Alignment procedure development 1999→2000
 - **☞** Based on (primarily) $e^+e^- \rightarrow \mu^+\mu^-$ events
 - **☞ 1.5 FTE for development and operation**
 - Procedure was manpower, cpu and data intensive
 - ~1 month turnaround time
 - Visible systematic errors remained
 - Early BaBar physics results were not compromised!
- Complete rewrite of alignment procedure 2001→2002
 - 3 FTE development effort over 1 year
 - Separate operations effort of 0.5 FTE
 - Designed coherently with a new BaBar Data Model
 - Deployed in 2002, we are still using this procedure today

BaBar τ lifetime in year 2000

Alignment Design Principles

- Combine complementary constraints
 - Use lots of tracks to cover all wafer DOFs
 - Use different event triggers and track geometries to balance systematic biases
 - Relate wafers across the detector to control global distortions
 - Incorporate lab-based optical survey information
- Select data to provide uniform constraints
 - Make detector coverage more uniform
 - Select events uniformly over (short) time period
 - Equilibrate statistical errors
 - Minimize statistical correlations between wafers

Global Distortions

- Small relative changes between adjacent wafers that add up coherently across the detector
 - Residuals work 'locally'
- Can introduce significant physics bias
- Choose alignment constraints which control these

	ΔR	Δφ	ΔΖ
R	Radial expansion (distance scale)	Curl (charge asymmetry)	Telescope (COM boost)
ф	Elliptical (vertex mass)	Clamshell (vertex displacement)	Skew (COM energy)
Z	Bowing (COM energy)	Twist (CP violation)	Z expansion (distance scale)

few mm

Overlaps

- Active Si overlap between adjacent wafers in the same layer
- Small gap between overlapping wafers
 - Constrains adjacent wafers
 - Not as effective in hex geometry
- Overlaps cumulatively provide a circumference constraint
 - Relies on precise knowledge of wafer size
 - Constrains radial expansion, clamshell distortions
- Small fraction of tracks
 - Between 1% and 3%

Cosmic Rays

- High-momentum tracks (> 1Gev)
- Relates opposite side wafers ⇒ constrains telescope distortion
- Off-axis ⇒constrains twist, elliptical distortions
- Low rate, non-uniform illumination

Pair Fit

- Fit 2 tracks from e⁺e⁻→μ⁺μ⁻ (and e⁺e⁻
 - → e⁺e⁻⁾ simultaneously
 - Constrained to a common origin
 - - Scale errors for beam uncertainties
 - Implemented in the BaBar Kalman track fit
- Provides pair-constrained residuals
 - Not just a mass-constrained vertex fit!
- Constrains curl, bowing, and skew distortions
- Technique can work for other track pairs (ie $\psi \rightarrow \mu^+\mu^-$)
- Depends on initial beam parameter knowledge

Optical Survey

- Use combination of Module Survey (lab bench) + Assembly Survey
- Constraint of wafers within a module complementary to tracks
- Constrains Z expansion distortion

(distortions X 50)

Survey Constraint

- Compute 'survey to current' transform using reference wafers
 Minimize difference between position of fiducials on the wafers
- Predict position of 'test' wafer position in 'current' alignment
- Compute $\Delta \chi^2$ = difference between current and survey position • Multiply out-of-plane errors X 10 to accommodate motion since survey
- Add survey $\Delta \chi^2$ to track residual χ^2

Outer Tracking Constraint

- Tracks are split at boundary
 - Each half fit separately
- Outer track fit used to constrain the inner track fit
 - Can select which parameters to propagate
 - Improves precision while controlling propagation of outer tracker systematics
 - Standard feature of BaBar Kalman track fit
- μ-pair + cosmic (high p)
 - Constrain only curvature
- Isolated high-P hadrons
 - Constrained to full outer track fit (5 parameters)
- Keeps relative (global) alignment from drifting

Alignment Data Reduction

- A dedicated sample is selected during reconstruction
 - μ pairs, cosmics, prescaled hadronic events with high P tracks, ...
 - Written to a dedicated stream (file)
- From ~ 2 days accumulation we extract an alignment sample
 - Figure 2 Events are prescaled by type and polar angle coverage
 - Timescale driven by cosmics
 - Only selected tracks are kept, all other data is removed
 - Outer tracker info is kept as a fit constraint, reduces track size by 1/3
 - Hits are prescaled for uniform coverage, selected hits are flagged
 - Defines fixed selection of hits used across iterations
 - Greatly reduces statistical correlation between wafers
- Customizations are built in to the BaBar Data Model

Alignment Iteration

- Iteration factorizes the alignment problem

 - No need to compute distant derivatives
- 1 iteration = loop over all wafers
- Minimize $\sum \chi^2$ (closed form) for each wafer
 - $\ \ \,$ Sum $\Delta \chi^2$ + associated derivatives wrt alignment parameters
 - Solve for the change in this wafers alignment parameters
- Wafer positions are updated only after a full iteration
 - Parallelizable (if wall-clock time were an issue)
- Initialize using previous, survey, nominal, test configuration, ...
- Tighten residual cuts after partial convergence
 - Reduces the effect of outliers without biasing alignment
 - Requires re-writing alignment dataset (reflagging hits)
- Convergence ≡ when wafers stop moving
 - $\Delta \chi_{\rm p}^2 \equiv (\Delta P/\sigma P)^2/6 < 0.01$ for every wafer in 1 iteration
 - ≈ ~100 iterations, <24 hours real-time (single processor)
 </p>

Alignment Convergence

Alignment Operations

- Alignment computed every 2 weeks (or as necessary)
 - Fully automated (except validation!)
 - 2-day turnaround
 - Upload to database only if changes are significant (by a human)
- So far we have ~40 alignment periods, separated by
 - Detector interventions
 - Humidity effects
 - Carbon fiber is hygroscopic
- Detector has been stable for the past ~2 years

History of outer layer relative radial position vs Z for 2001→2003

http://dnbmac3.lbl.gov/~brownd/align ment/SvtChange_dr

Global Distortion Tests

- Validate the procedure against global distortions
 - Small, coherent relative wafer displacement
- Use undistorted MC sample composed as data
 - **©** Cosmics, μ-pairs, hadronic decays, ...
- Align starting with a distorted initial condition
 - 50 μm scale, smooth dependence on either R, φ, or Z

	ΔR	Δφ	ΔΖ
R	Radial expansion (distance scale)	Curl (charge asymmetry)	Telescope (COM boost)
ф	Elliptical (vertex mass)	Clamshell (vertex displacement)	Skew (COM energy)
Z	Bowing (COM energy)	Twist (CP violation)	Z expansion (distance scale)

Example: Elliptical Distortion

Apply 0.1% elliptical distortion (~50μm amplitude in layer 5)

 ΔR vs ϕ by layer

100 Iterations

Z Scale Validation

μ-pair miss distance

The Explanation: Wafer Bowing

Wafers are not planes (or cylinders)!

3-D Interferometric survey of 1 module before installation

μ-pair Miss Distance

- Average variation of <2 μ m in Σd_0 , <10 μ m in Δz_0
- With 10X standard alignment sample, structure is seen
 - More general non-planar distortions

τ Lifetime Revisited (2005)

• "The peak to peak variation of the reconstructed decay length vs ϕ is consistent with just natural lifetime fluctuations."

BaBar's sin2β History

Si Alignment Lessons Learned

- Detector Design
 - Prioritize material, resolution, stability
 - Simulate alignment to optimize overlap, layer coverage, ...
- Construction
 - Make Lab-bench measurements of all components
 - Survey aggregate sensor units (module, ladder, ...) in 3-D
 - Measure material properties of all active-region components

 ⊕ Si thickness, material of hybrids, location of masking, ...
 - Assembly survey as a cross check (if practical)
- Software Design
 - Data model support for alignment
 - Custom event selection, hit flagging, parameter constraints
 - Kalman track fit alignment-specific features
 - Pair fit, parameter constraint
 - Allocate adequate manpower to alignment development
- Operations
 - Allocate dedicated processing and storage for alignment

Lessons Learned (continued)

Procedure

- Accurately represents the true DOFs
 - Consider non-planar distortions!
- Use complementary event types and external constraints
- Prescale events to create a uniform, consistent data sample
- Prescale and flag hits
 - Reduce statistical correlations
 - P Consistent and stable χ^2 calculations
- Validate against realistic distortion scenarios
- Don't get hung up on mathematical details
 - Any well-behaved, additive measure will probably work
 - Any minimization technique that converges will probably work

Physics Use

- Plan for providing an early (preliminary) alignment
- Provide analysts with a misalignment estimate
- Be prepared for the unexpected!

Backup Slides

How Well To Align?

Momentum resolution

$$\delta L \approx \frac{\frac{\delta_{x}}{0.7\sqrt{N}} \oplus \frac{R_{\min}14Mev\sqrt{\Delta/X_{0}}}{P\sin^{3/2}\theta}}{\alpha} \qquad \frac{\delta P_{t}}{P_{t}^{2}} \approx \frac{\delta_{x}\sqrt{720/(N+5)}}{0.3L\int\vec{B}\times\vec{dL}} \oplus O(1/P)$$

$$\frac{\delta P_{t}}{P_{t}^{2}} \approx \frac{\delta_{x} \sqrt{720/(N+5)}}{0.3L \int \vec{B} \times \vec{dL}} \oplus O(1/P)$$

- Statistical (< 5% from alignment)
- Systematic (no visible biases)
 - Roughly 3-times better than statistical on average

Pair Fit Results

- Curvature resolution improves >2 orders of magnitude!
- Constrains relative dip angle (through boost)

Lab⇔Assembly Survey Comparison

- Compare at fiducials
 - Remove global DOFs
- <3μm in plane
 - [™] ~1µm statistical
- ~20µm out of plane
 - [☞] ~10µm statistical
- Average these when used in alignment

Event and Hit Prescaling

normal

μ-pair

TIFF (Uncomprare needed to Verlaps

- Prescale events by category
- Prescale hits on each track
 - Uniformly populate wafers
 - Sample data period uniformly
 - Balance different event types
 - Eliminate statistical correlation between wafers
- Flag selected hits
 - The exact same hits are used to calculate χ^2 every iteration
 - Can (anti-)select hits when validating
 - Written into the data
- Overlaps are under-populated
 - 1.5% nominal overlap in layer 4

Iteration Control

- Iteration is controlled by tcl scripts with tk window
 - Parameters can be adjusted
 - Job progress is monitored
- Typical job converges in ~100 iterations and takes ~ 24 hours

μ-pairs after Curvature Correction

- Average distortion reduced to ~2 μ m in Σd_0 , ~10 μ m in Δz_0
- With 10X data, structure is seen!

QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

David Brown

Aleph VDET bonding error

Track position on wafer (cm)