Alignment experience at CDF
Aart Heijboer
University of Pennsylvania

for the CDF tracking group
many thanks to Raymond Culberston (fnal)
Overview of CDF

tracking system:
- pretty good approximation
- COT measures the curvature
- Si measures the impact Parameter
COT

- 30K sense wires, 96 layers,
- r=41cm to 135cm, drift chamber
- 12-wire cells, tilted for Lor. angle
- \(\frac{1}{2} \) are 2° stereo
- \(\sigma(p_T) = 0.15\% \ p_T^2 \)
COT alignment

starting point:
- assembly specifications, plus
- finite element analysis to model
 - end plate distortion
 - 1.6” aluminium with 5040 slots for wire planes and sheets
 - wires and field sheets under tension: 36 Tons of force
 - deformations of 0.6 cm
- effects of gravity and electrostatic forces on wire positions modeled

E = 2.4 kV/cm
Amplitude = 117 microns
Offset = 84 microns
COT alignment

- cosmics: fit single helix to both in and out-going legs
- For each cell, fit:
 - fwest, feast
 - tilt of wires in the cell

residual along track direction

\[\Delta Y (\mu m) \]

compare to hit-resolution of \(~140 \mu\)
COT alignment

'false curvature' correction
- r-dependent offset
- compare E/p for e^+ e^- and derive correction

recently: better understood
- additional z-dependence
- new COT alignment used for W-mass analysis (has smaller false curvature correction)

also: many tests done with J/ψ to derive a posteriori corrections
CDF Silicon Detector

- **Run II Silicon**
 - 7-8 Silicon Layers
 - 722,432 Channels / 1008 Ladders / 5456 Chips
 - 6 m² of Silicon
 - Designed to last for 2-3 fb⁻¹

- Silicon detector comprised of three (mechanically) separated
 - Layer-00
 - SVX II
 - Intermediate silicon layer: ISL
SVX II

- The core of the CDF Silicon Detector
- 2.5 to 10.6 cm in radius
- 5 layers of double-sided silicon
 - 3 layers with axial & 90° stereo strips (1,2,4)
 - 2 layers with axial & 1.2° stereo strip (3,5)
- Strip pitch from 60μm to 140μm
- highly symmetric: 12 wedges x 3 barrels

360 Ladders / 3168 chips
Intermediate Silicon Layer (ISL)

- small angle stereo,
- One central layer (|\(\eta|<1\))
 - Links tracks from SVX to Wire-Chamber (COT)
- Two forward layers (1<|\(\eta|<2\))
 - Allows tracking at high \(\eta\)
- Strip Pitch:
 - 112\(\mu\)m (axial & stereo)
Layer-00

- Precision position measurements
 - 2x25 µm effective strip pitch
 - Low Mass: 0.6%-1.0% X_0
 - Mounted directly on Be beam-pipe
- Actively cooled
- Rad-Hard Silicon
 - Can be biased to 500V
 - Likely to outlive inner most SVXII layer

300µm installation clearance

72 Ladders / 108 chips
'online' alignment / positioning
Silicon Vertex Trigger (SVT)

- For the first time, a silicon detector is used in the online (L2) trigger
- The SVT takes data directly from the SVX
 - Does fast track reconstruction using a set of templates
 - Looks for displaced vertices
 - Great for heavy quark tagging
- Uses 4/5 ladders in one SVX wedge
- Requires good SVX alignment
 - 100 μrads with respect to beam line

- Trigger on events with two displaced ($d>120 \ \mu m$) tracks
- Foundation for large part of b-physics program
- Takes data directly from SVX
- Si track reconstruction at L2 trigger
- Pattern search requires
 - straight SVX positioning wrt beamline (100 μrads)
 - no wedge-crossers -> keep beam in middle

- Very fast reconstruction of silicon data at L2 (20μs latency) by dedicated hardware: SVT
Active positioning system

- Mission: Keep silicon tracker aligned parallel with beam full scale ~ 20micron
 - active movement
 - clamping mechanism
- supported weight:
 - designed for 50-80kg Silicon
 - actual weight: 110 kg + 70 from cables
- system cannot handle the weight
- Successfully used to move Si to coincide with Tevatron beam in 2001 with some manual help to take weight off). Crucial for displaced track trigger.
- Since then, not operated anymore, but still **passively** supporting Si
Real time monitoring system (RASNIK)

- 17 systems deployed throughout tracking volume
- Some not anymore operational due to line of sight blocked by cables during shutdown ;-(
- Not used much anymore
 - not needed: detector is quite stable
 - some false 'alarms' due to movement of projector

- Maintaining expertise is becoming an issue here too.
'offline' alignment
Assembly and survey data

- Surveys performed at each stage of assembly:
 - ladders measured before/after they were put on barrels
 - barrel-to-barrel measurements
 - ISL vs SVX vs L00
- Ladder survey showed:
 - ladders bowing & 'kinking' at wafer boundaries.
 - solution: align at wafer-level
 - individual wafers not flat either
 - additional DOFSs in database:
 - wafer warp: wafer height vs z, rφ (quadratic par.)
- Wafer warps are only numbers that remain from survey data all other dofs have been remeasured offline.
- Survey data gave us excellent starting point: *pattern recognition works*.
 - but not used as constraint.
SVX Internal alignment

- Start from assembly.
 - was very good
 - 10 μ in rφ, / 40 μ in r

Philosophy:
- make ntuples with hit information
- store residuals wrt to track fit
 - simple, fast refits on residuals
 - different fit possible
 - Fix curv from COT, fix track at layer 5 hit and SVX beamline
 - N-1 unbiased tracks
 - COT tracks / biases tracks etc

- simple algorithm
 - 'one thing at a time'
 - wafer -> ladder -> wedge, global
 - db design follows this
 - need to iterate a few times
 - for pattern recognition & non-linearities &
SVX alignment algorithm

Define local coordinates at wafer center: r, z, φ

\[\Delta = -T_\phi + \tan(\alpha)T_r + zA_\phi + \tan(\alpha)zA_\phi - \tan(\alpha)\phi A_z \]

ϕ residual to first order given by:

χ² minimisation → inversion of 5x5 matrix consisting of simple sums of the residuals.
Alignment Algorithm

matrix inversion boils down to...

$T_\phi = \langle \Delta \rangle$

$R_z = \langle \phi \Delta \rangle$

$T_r = \langle \tan(\alpha) \Delta \rangle$
Remaining degrees of freedom

Basically some as internal, using $\Delta \phi$ wrt COT tracks
- rotation about z-axis
 - compare fitted ϕ of SVX and COT tracks
- venetian blind
 - compare fitted ϕ of SVX and COT tracks
 as function of ϕ
- overall scale
 - again SVX vs COT ϕ as function of ϕ
 - overlap residuals... tricky
 - overlap region very small in all but 2 layers
 - residuals behave differently (i.e. weird)
 very close to edge.
 - not fully consistent with internal alignment
 (e.g. z-dependence conflicts with rotation
 measurement of individual wafers)
 - understood to $O(10 \mu)$
 - lifetime measurements compute systematic on r-scale
 by scaling all Si by 50μ -> very small effect ($50 \mu/10 \text{cm}<10^{-3}$)
Z-alignment

- Align the 90 deg layers to each other
 - track trough L1 and L4, fit L2
- Small-angle stereo
 - found that stereo angle was wrong: variable outside specs and offset
 - z-scale fixed by measuring distance between barrels (could also use COT, but COT z-scale very well known)

- typical residuals now: 10µ in 90°
 - 100µ in SAS
ISL & L00 alignment:

- Using fits to residuals from tracks from SVX and COT
- Tracks cross only 1 or 2 ISL layers => no 'internal' ISL alignment
- Similar algorithms to SVX internal alignment
- Layer-00: only ϕ layer: residuals can be set = 0.
Final residuals

Why are not not all 0?
- In MC they are (nothing wrong with algorithm)
- degrees of freedom that are not understood?
- good enough = good enough
 - people doing physics want workable alignment fast.
 - people doing alignment want to do physics. i.e. we have very limited manpower, spending most time now on validating/monitoring, little on going after hard problems that might by us a few micron improvement.
- Making (even small changes) has some overhead: reprocessing of data, Monte Carlo, revalidating.

- typical $r\phi$ residuals seen:
 - 5μ in ISL micron
 - couple μ in SVX
 - 1μ in L00
Overall accuracy

- same un-understood effects are at few µm level
- small compared to IP resolution
stability over time
Stability of SVX

Alignment tasks now mostly monitoring of stability.
- SVX internal alignment observed to be very stable over time
- beginning 2005, Si temp. was lowered from -6°C to -10°C no difference seen
- Same goes for internal z-residuals
Stability of Layer-00

- Layer-00 mounted on the beampipe
- Susceptible to shaking during detector work
 - Misalignments seen, up to 20 μ, after each shutdown
 - Most important layer for IP: want residuals < few μ
- Some spontaneous drift also seen
- => Layer-00 requires realignment every few months

![Graph showing stability of Layer-00](image)
Global alignment of SVX wrt COT

- Measure beam-line using
 1) only COT information
 2) SVX information
- compare positions to align SVX wrt COT
- compare measured slopes for global rotation

- beamlines are needed for physics anyway.
 - automatically generated for each run

 crosschecked with SVX residual using COT tracks.
The silicon is slowly sinking at an average rate $\sim 50\mu$/year
- Remember those overloaded inchworms I told you about?
- No indication for horizontal movement
- Beamline slopes show no indication of rotation (agreement few 10μrad)
Stability global positioning

Also seen by RASNIK monitoring system

- Periodically correct the global alignment of the Si to keep misalignment w.r.t COT within ~20µm.
concluding...
“lessons learned”

- Personpower is limited, spend it on
 - getting alignment out fast: physics analyses do not like to wait for it.
 - checking with different datasets (J/Ψ+Z mass/cosmics/ magnet-off), understanding discrepancies, *documentation* rather than
 - using many different algorithms that are fundamentally equivalent i.e. many different ways of looking at the same residuals

- An alignment scheme based on the symmetries of the detector was easier than a global inversion strategy.

- Moving targets will slow you down
 - Si clustering / Tracking / Vertexing / preferred datatsets and *bugs* all changed often
 - Plan for a partial, changing detector, chips/ladders/wafers come and go

- Flexible database/code structure: we found several unexpected DOF's (waver bows, stereo angles – modif'ing db+interface was painful)
“lessons learned”

some more opinions from CDF alignment people.

- Construction was excellent
 - important to get going. Finally ~everything done on data.
 - in case of conflicts, you'll always choose to go with the data

- Retaining expertise & software compatibility is becoming an issue, especially for little-used systems (inchworms & rasniks)

- *Data is much more “squirrelly” than Monte Carlo*
 - MC is good to test methods, but...
 - Some inconsistencies still not resolve
 - Couldn't get below ~2-5 μ in general

- We did not really think about alignment until the data were there. This workshop already shows LHC is in better shape.
Summary

- Positioning tolerance of Si determined by displaced track-trigger
 - Active positioning and monitoring system not used much because of stable conditions (very fortunate)
 - SVT works beautifully
- Survey data very important.. but finally overruled by data
- Si alignment understood at level of few-microns
 - because very hard to make more progress
 - Alignment not nearly dominant contribution to resolution

Displaced track trigger (SVT)+
Great momentum resolution (COT) +
excellent vertexing resolution \[\ldots\]
Summary

- Positioning tolerance of Si determined by displaced track-trigger
- Active positioning and monitoring system not used much because of stable conditions (very fortunate)
- SVT works beautifully
- Survey data very important, but finally overruled by data
- Si alignment understood at level of few-microns because very hard to make more progress
- Alignment not nearly dominant contribution to resolution

Displaced track trigger (SVT) +
Great momentum resolution (COT) +
excellent vertexing resolution (SVX+L00)
CDF Run II Preliminary \[L = 1.00 \text{ fb}^{-1} \]

\[B_s \rightarrow D_s^* (3)\pi^+ \]

\[\langle \sigma_{cl} \rangle = 25.9 \mu \text{m} \]

osc. period at \(\Delta m_s = 18 \text{ ps}^{-1} \)