Alignment Strategy for ATLAS: Detector Description and Database Issues

Grant Gorfine (Wuppertal/CERN)

On behalf of the ATLAS Alignment Community

LHC Alignment Workshop, CERN Sept 4-6, 2006

Outline

- Motivation
- GeoModel Detector Description
 - Raw Geometry
 - Readout geometry
- Databases
 - Primary Numbers
 - Conditions Database
 - Alignment constants
- Misalignments in Simulation and Reconstruction.
- Testing the alignment cycle.

Motivation

- Detector Description and Database are essential infrastructure for doing alignment and using the results.
- Integral to preparations for our Computing Systems Commissioning
 - Simulate a mis-aligned, mis-calibrated detector
 - Also distorted material and asymmetric B field
 - Run alignment algorithms \rightarrow produce alignment sets
 - Study reconstruction performance and physics channels with residual misalignment
 - "Dress Rehearsal" for data taking Test of our computing model.
 - Provide calibration and alignment within 24h.

Detector Description Overview

Detector Description- Raw Geometry

GeoModel

- GeoModel Kernel
 - toolkit of geometry primitives: shapes, materials, etc
 - Physical Volumes (PV) have attached nodes – connects other physical volumes via transform
- Special "Alignable" nodes.
 - Default transform + Delta transform.
 - Can be at several levels
- Full Physical Volume (FPV)
 - Calculates and caches local to global transform.
 - When alignable node higher up in hierarchy is modified
 - cache is invalidated.
 - Transform recalculated on next access.

• Alignable node

PV = physical volume

FPV = full physical volume (transform cached)

Grant Gorfine LHC Alignment Workshop, CERN

Sept 4-6, 2006

Alignable nodes at several levels

- For example we have 3 levels in the silicon detectors.
- Level 1: Subsystem (Whole Pixel, Barrel SCT and Endcap for SCT)
 - Global reference frame
- Level 2: Layers/Discs
 - Global reference frame
- Level 3: Modules
 - Local reference frame

Detector Description - Readout Geometry

- Readout Geometry
 - Detector Manager
 - Access to detector elements (sensitive elements)
 - Manages transfer of alignment constants from Conditions Database to GeoModel alignable nodes.
 - Alignments updated via callback (or explicit call in geometry initialization)
 - Detector Elements
 - Points to GeoModel Full Physical Volume
 - Quantities derived from transform cached for fast access.
 - Reconstruction only accesses geometry information via detector elements in readout geometry.
 - Always gets aligned positions.
 - Most clients do not need to worry about alignment infrastructure.

Detector Description Database

- Contains Primary Numbers
- Uses Hierarchal Versioning System
 - Each table has tag, build up tags in folder structure.
- Geometry configuration specified by an overall tag (eg ATLAS-CSC-00-00-00)
- Either Ideal geometry or
- For some sub detectors limited misalignment scenarios also in Detector Description database

Conditions Database

- Alignment constants written to LCG POOL Root file using same persistency technology as event data.
- LCG COOL database records IOV (Interval Of Validity) and reference to POOL file.
 - IOV: run/event range or time
- Clients register callbacks on conditions object
- IOV services takes care of loading new data if IOV changes (checked at start of each event) and triggering callbacks.

Alignment Constants

- As currently implemented for Inner Detector. Other subsystems very similar.
- Two categories
 - Rigid body transforms (rotation + translation)
 - Delta transform (differences from ideal geometry)
 - Use CLHEP HepTransform3D
 - Applied directly in Detector Description at several levels in hierarchy.
 - Alignment data in AlignableTransform collection: (Container of Identifier and HepTransform3D pairs)
 - Common ATLAS Identifier uniquely identifies detector element or higher level structure (eg a silicon layer)
 - Fine corrections. Eg module distortion, wire sag
 - Arbitrary length array of floats
 - Interpretation is detector specific.
 - Not dealt with at Detector Description level. Applied at Reconstruction level when track is known. Also plans to use at digitization level.

Survey data

- Can be stored and fed into geometry using the same infrastructure
 - Acts as a first alignment set.
- Survey Constraint Tool to constrain track-based alignment
 - Constants stored in second instance of AlignableTransform collection.
- Different levels of hierarchy helps as the survey numbers follow the same hierarchy to some extent.
- Similarly for input from hardware based alignment.

Misalignments in Simulation and/or Reconstruction

- Can apply misalignments at both reconstruction and simulation levels.
 - GeoModel Detetctor Description is common source for both Geant4 simulation and reconstruction
 - \rightarrow Same infrastructure for misalignments in both.
 - Simulation: Alignments loaded at initialization. GeoModel \rightarrow G4
 - Reconstruction: Alignments loaded before event if IOV changes.

Misalignment in Simulation

- Motivation
 - Misaligning only at reconstruction level not exactly the same as physically moving detectors.
 - Overlaps change.
 - Can do a blind misalignment challenge
 - Validate our reconstruction works in a non symmetric detector.
 - More realistic exercise of computing model.
- Extra challenges for misalignment in simulation geometry
 - Need enough clearance to avoid geometry clashes. Mostly a matter of resizing/reshaping some envelopes. Some services had to be artificially thinned or moved.
 - Facilitated by alignable nodes at several levels allows larger movements of big structures (eg subsystem) and smaller movements of lower structure (eg modules).

Testing the alignment cycle (in our Computer System Commissioning)

- PassO nominal geometry or different from "as built" by uncertainty in survey.
- Pass1 First pass alignment
- Then iterate

Alignment in the Computing Model

- Provide alignment for Tier-O first pass processing
 - Delivery of alignment constants required within 24h
 - dedicated calibration stream from Event Filter under study
 - track selection, size and content also under study
 - development of monitoring of stream and data quality at Event Filter and Tier-O.

Summary

- Detector Description and Databases are an integral part of the alignment infrastructure.
 - Has been and is being used in Combined Test Beam and Cosmics commissioning.
- Same infrastructure used in both reconstruction and simulation.
- The alignment infrastructure and ability to misalign in simulation are important aspects for preparing to do our data taking rehearsal.

