Alignment strategy for the ATLAS muon spectrometer

P.-F. Giraud DAPNIA, CEA Saclay

on behalf of the ATLAS muon alignment groups

The ATLAS muon spectrometer

⇒ Muon tracks measured in three points
 ⇒ Requirement: transverse momentum resolution of 10% at 1 TeV/c
 ⇒ Curvature: 400-700 µm
 ⇒ 10% resolution: 40 µm

The misalignment

- \Rightarrow Impact of misalignment:
 - huge loss on momentum resolution
 - ➡ foreseen with 1mm misalignment even for low momentum tracks
- \Rightarrow Sources of misalignment:
 - ➡ Initial positionning of the chambers: 2 to 10 mm
 - Deformation of toroid due to weight (mm level)
 - ⇒Switch on B field (mm level)
 - Thermal expansion (< 1mm)
 could evolve significantly in time
 online monitoring is needed

3

The optical alignment

•Translation in y Rotation around optical axis Magnification

•Barrel: ~6000 optical lines •End Cap: ~7000 optical lines •Continuous readout (cycle=15 to 20 min) 2006-09-05 Pierre-François Giraud, LHC Detec

RasNik

Mask

Lens

CCD

Layout of the optical sensors: barrel

Layout of the optical sensors: end cap

The optical sensors

axial/praxial sensor

reference plate mounted on toroid

2006-09-05

Calibrations

⇒Should know positions of optical elements w.r.t. chamber wires

 \Rightarrow Measurements:

- ⇒ platform gluing on chambers
- ⇒extension plates

⇒alignment bars

➡ optical sensors

X-ray tomography: alignment platforms (CERN)

The alignment principle

 \Rightarrow 80% of ASAP and Aramys: detector description, calibrations \Rightarrow Parameters to determine:

	Position	Deformation	Number of	Number of parameters
	parameters	parameters	elements	to determine
Barrel chamber	6	8	708	~10000
End cap chamber	6	9	544	~8200
End cap bar	6	9	96	~1400

Algorithm

Relative alignment:

$$x^{2} = \sum \frac{\left(\left(x_{model} - x_{model}^{ref}\right) - \left(x_{meas} - x_{meas}^{ref}\right)\right)^{2}}{\sigma^{2}}$$

- assume a reference time is available where knowledge of the geometry is very accurate
- subtract the measured and estimated sensor parameters from this reference
- much less sensitive to bad calibrations
- ⇒ Relative alignment: extrapolate geometry w.r.t. a given time reference
- ⇒Absolute alignment: does not need the time reference
- Warning: both alignments are internal alignments
 no optical connection to inner tracker or beam pipe
- \Rightarrow ASAP and Aramys both implement absolute and relative modes

Algorithm

 \Rightarrow Aramys: end cap

- → minimization using Minuit.
- ➡ implementation of factorization:

bar positions are fitted first
 then chamber positions
 with respect to bars
 takes advantage of the particular hardware

➡4 minutes to fit the 2 end caps

⇒ASAP: barrel

- ⇒ fast linear least square fitter
- hardware does not allow factorization easily
- ⇒ problem to be investigated

2006-09-05

Tools

\Rightarrow ATOS: 3D viewer

- ⇒openGL
- ⇒ interactive navigation
- informations/calculations about selected elements is displayed
- debugging the detector description
- ⇒JdbPlot: database browser
 - ⇒java
 - ⇒select database parameters
 - ⇒ selection criteria (e.g. date)
 - ⇒gets ROOT tree, runs ROOT macro
 - → monitoring

Tools

⇒ Ease the description of the alignment, in ROOT/C++:

- Element class: handles trees of mechanical objects
- ➡XML format describing any Element trees
- ⇒asapConfigGUI (java):
 - select subset of chambers and optical lines
 - ⇒ save xml file used for 3D view or ASAP reconstruction

⇒Alignment Application Server

- check status, configure, run online alignment, via web
- →CORBA/java
- prototype ready
 2006-09-05

	• 🗙 🧭 🔽 🔛 🍌 🎘 💿 🚑	
Muon chambers Optical line		
Activated Search Type Sector	Muon chamber name Activate Type Sector Side Eta BIL6C01 BIL 1 C 6 BIL5C01 BIL 1 C 5	
BEE (0/32)	BIL4C01	
- BIL (24/72) - BIM (0/20)	BIL1C01 BIL 1C 1 BIL1A01 BIL 1A 1	
- BIK (0/24) - BIS (16/128)	BIL2A01 Image: BIL 1A 2 BIL3A01 Image: BIL 1A 3 BIL4A01 Image: BIL 1A 4	
BMF (0/12) BML (0/112)	BILSA01 I BIL 1A 5 BILSA01 I BIL 1A 6	
- BOA (0/2) - BOE (0/16)	BIL5C03	
- D BOG (0/18) - D BOL (0/96)	BIL3C03	
- BOS (0/72)	BIL1A03 IL BIL 3 A 1 BIL2A03 IL BIL 3 A 2	
- 🗋 **All** (40/708)	BIL3A03 ⊮ BIL 3 A 3 BIL4A03 ⊮ BIL 3 A 4 BIL5A03 ⊮ BIL 3 A 5	
	BIL6A03 IV BIL 3A 6 BIL6C05 BIL 5C 6	
	BIL S C S BIL4C05 BIL S C 4 BIL3C05 BIL S C 3	
	BIL2CO5 BIL 5 C 2 BIL1C05 BIL 5 C 1	

Validation: H8 test beam

- ⇒6 barrel and 6 end-cap chambers were tested in beam (~1% of Atlas)
- ⇒2002-2004
- ⇒Massive debugging of hardware and software

Test beam results

Validation: toroid release

 ⇒ Toroid was supported by jacks during its assembly
 ⇒ Test for the alignment: monitor the toroid deformation during the release of the jacks

raud, LHC Detector Alignment Workshop

Toroid release results

⇒ Deformation found consistent with calculation and survey

⇒ ASAP: 17.6 mm
 ⇒ geometers: 17 mm
 ⇒ prediction (finite element): 18 mm
 2006-09-05 Pierre-François Giraud, LHC Detector Alignment Workshop

Alignment with straight tracks

- ⇒ Several runs with straight tracks are foreseen:
 - cosmic ray runs: some chambers poorly illuminated
 - ⇒beam halo: end-cap mainly
 - ⇒run with:

restoroid off

- ræsolenoid on
- high momentum tracks selected using inner tracker

 \Rightarrow Purpose:

- debugging the optical alignment
- reference geometry of the relative alignment

Endcap illuminated with cosmic rays

Alignment with straight tracks: test beam

Some deficiencies of the optical alignment

Track-based alignment in B-field

\Rightarrow TODO list:

- ➡ flag interesting events in trigger
- → send events to a computing farm and dump information for the alignment
- ⇒ perform the optical+track combined fit
- \Rightarrow Should perform this fit in several locations of the spectrometer (barrel and end-cap)

 \Rightarrow Computing needs: ~50 PCs being set up in Munich Tier 2

Conclusion

- ⇒ The alignment of the Atlas muon spectrometer should be known at 30µm
- ⇒ Based mainly on optical sensors

 - - release ™toroid release
- \Rightarrow Part of the alignment is based on tracks
 - Straight tracks for the commissioning started to be understood at test beam
 - Tracks in B field during normal operation
 Scomplete problem to be investigated