Alignment of LHCb Vertex Detector

UNIVERSITY of GLASGOW

- 1. VELO alignment context
- 2. Software alignment strategy
- 3. Status & plans

LHC Detector Alignment Workshop

5st September 2006

- 2. Software alignment strategy
- 3. Status & plans

1

2. Software alignment strategy 3. Status & Plans 1. The VELO Context 2. The alignment procedure

\Rightarrow Vertex Detector (aka VELO) is a moving detector:

 \rightarrow Divided into two boxes containing 21 modules each. A module is a pair of two sensors (r, ϕ) bonded together (*see S.Blusk introduction for more details*).

 \rightarrow During LHC beam injection, each box is retracted by 3cm from its nominal position.

 \rightarrow Then the boxes are moved back close to the beam, and data taking starts.

1. The VELO Context 2. The alignment procedure

→ LHCb first level trigger (Vertex Trigger) relies on a good VELO positioning (LHCb note 2005-056).

→ VELO alignment has thus to be checked after each fill (*at least look at the residuals*), and correction might be necessary.

→ Alignment should be reasonably fast, as for the moment we don't know if we will need to align nothing or the whole VELO on a fill-to-fill basis...

A precise and fast algorithm for VELO software alignment is thus necessary

The VELO Context
The alignment procedure

\Rightarrow Software alignment is just a part of the story:

Precision Mechanical Assembly

2 System Metrology & Initial Alignment \Rightarrow Alignment Challenge and Detector Calibration

3 Software Alignment & Alignment Monitoring \Rightarrow Checking the residuals after each fill, then perform a new alignment if necessary.

4 Software Alignment for offline data processing \Rightarrow Final 'best precision' alignment.

The VELO Context
The alignment procedure

 \Rightarrow About the mechanical accuracies:

 \Rightarrow **Box** positioning estimates:

 \rightarrow 50 microns accuracies for translations, 50 μ rad for rotations.

 \rightarrow Position reproducibility of 10 microns.

 \Rightarrow Expected accuracies for **modules** and **sensors**:

 \rightarrow Sensor are positioned on a same module with ~10 microns accuracy (*values* measured on the first production modules)

 \rightarrow Module will be positioned within a box with ~20 microns accuracy

 \Rightarrow Temperature and vacuum effects still have to be investigated

I. VELO alignment context

- 2. Software alignment strategy
- 3. Status & plans

\Rightarrow How to define a strategy for software alignment?

 \rightarrow Try to be conservative: for the moment we don't know if the modules are moving when boxes are retracted, *so we need to include module alignment*.

 \rightarrow Try to be flexible: but if we don't need it, we should be able to turn it off without any problems, so we need to separate the different alignment steps.

 \rightarrow Try to be fast and robust: we have to be able to process the alignment in few minutes, constrained global fit method (*via Millepede*) seems a good candidate.

 \rightarrow Linearize the problem: to use a global technique, we need to be able convert VELO (r, ϕ) information into a linear (X,Y) expression. Feasible as R and ϕ sensors are bonded together within a module.

2. Software alignment strategy

\Rightarrow Vertex Module Definition:

\Rightarrow The proposed method:

 \Rightarrow STEP1, along with preliminary results, is detailed in note LHCb-2005-101. STEP2 is described here (*note in preparation*):

http://ppewww.ph.gla.ac.uk/LHCb/VeloAlign/VeloApplication.html

I. VELO alignment context

- 2. Software alignment strategy
- 3. Status & plans

\Rightarrow Alignment algorithm *flow* (integrated within LHCb software):

\Rightarrow Methodology for the tests:

 \rightarrow 200 runs of 2000 min. bias events were passed trough LHCb software with the following misalignments scales (*all 6 degrees of freedom are taken into account at each level*):

	Translations (in μm) (δx, δy, δz)	Rotations (in mrad) (δα, δβ, δγ)
Module	30	2
Box	100	2

 \rightarrow Misaligned events are produced using alignment framework (*see <u>J. Palacios</u> talk*).

→ No momentum cut applied for track selection *(try to rely on VELO information only)*

1. How does it wor 2. MC Tests 3. Real Data

\Rightarrow **STEP1**: Module alignment:

 \rightarrow Only the 3 major DOFs are well corrected, sensitivity to other DOFs is smaller, but this is expected.

 \rightarrow Resolution on alignment constants (with few 10000s tracks) are 3.8 μm (δx and δy) and 0.3 mrad ($\delta \gamma$)

 \rightarrow Algorithm is fast (few minutes on a single CPU)

 \rightarrow Improvement expected with the use of halo tracks.

1. How does it work 2. MC Tests 3. Real Data 4. What's Next 2

\Rightarrow **STEP2:** Box alignment *(with primary vertices)*:

 \rightarrow Use Millepede again, but local fit is now a PV fit using corrected track parameters...

- \rightarrow Resolution obtained is still not satisfying (~30 μm for offsets, ~90 μrad for tilts), but give the position of each box w.r.t. the beam.
- ightarrow Still investigating possible improvements here....

1. How does it wor 2. MC Tests 3. Real Data 4. What's Next ?

\Rightarrow **STEP2:** Box alignment *(with overlapping tracks)*:

How does it work ?
MC Tests
Real Data
What's Next ?

UNIVERSITY of GLASGOW

\Rightarrow Alignment Challenge and Detector Calibration (ACDC):

 \rightarrow Test beam using a 3 modules setup (*aka ACDC2*) in August.

 \rightarrow Just enough to get tracks, and then residuals, and then alignment...

 \rightarrow Alignment performed using ~8000 tracks (2% of the avail. dataset) with 0° incidence angle. Angled tracks will be included in the future.

 \rightarrow In parallel to the alignment process, a independent sample of 2000 tracks is collected. Space-points residuals before and after alignment are determined using this sample.

How does it wor
MC Tests
Real Data

\Rightarrow The first 'real' VELO alignment:

 \rightarrow Mean value after alignment is close to zero, as expected, the code is doing his job...

 \rightarrow Applying the corrections found at the pattern recognition level seems to improve the track quality.

 \rightarrow Still a lot to understand here (*e.g.* sensor to sensor misalignments), but that looks promising!

1. VELO Alignment Context 2. Software alignment strateg

3. Status & Plans

How does it work
MC Tests
Real Data
What's Next ?

Backup Slides

\rightarrow **Proposed solution**:

1. Take tracks and transform (R,ϕ) coordinates into (X,Y,Z) ones.

2. Precisely known parameters are $\phi(\phi_{sensor})$, $R(R_{sensor})$, Z_R , and Z_{ϕ} . Should we take Z_R or Z_{ϕ} for the Z coordinate?

3. Right figure describes why we choose Z_{R.}

4. Assuming this, we could obtain a precise (X,Y,Z) coordinate for each (R,φ) couple of clusters.

 \rightarrow <u>Step 2 algorithm:</u> 'Millepede returns'

