Alignment Challenge

at

LHCb

Steven Blusk
Syracuse University

LHC Alignment Workshop, Aug 3-5, 2006
LHCb Experiment

- Large Samples of b decays for New Physics searches in CPV & rare B (&D) decays
- B production predominately at small polar angles
- LHCb optimized as single forward arm spectrometer

LHCb Tracking System

- 21 stations R and ϕ sensors
- Vertex Locator
- Muon system

LHCb Experiment

- 250 mra
- 10 mra
Tracking System Challenges

- Large track density

- Trigger uses tracking info,
 - Requires good alignment
 - Online updating of constants if needed.

- Tracking algorithms need to be FAST, as they are executed online. Want offline pattern recognition very similar to online version, except for fine tuning of alignment & calibrations.

- Minimize material (no surprise here)
Vertex Locator

- **21 tracking stations**
 - 4 sensors per station with r/φ geometry
 - Optimised for
 - Fast online 2D tracking
 - Vertex reconstruction
 - Offline track reconstruction

R-sensors
- 2048 strip in 45° sectors
- Strip pitch increase with R: 40μm → 100μm

Φ-sensors
- 2048 strip in inner and outer regions
- Strip pitch increase with R: 36μm → 97μm
Most precise device in LHCb moves
- Retracted by ~ 3 cm in-between fills
- Reinserted to ~ 8 mm after stable beams

Integral part of the trigger
- RZ (2D) tracking/trigger scheme requires transverse alignment between modules <20 μm.
- Internal alignment monitoring/updating as necessary (online vs offline), 2D vs 3D
- Rest of tracking system (online vs offline)
 - Momentum estimate using VELO-TT in HLT.

Need for “same” tracking in HLT and offline:
 - tradeoffs of speed/efficiency/ghost rate

- ~4% ghost rate (3D)
- ~7% ghost rate (2D)
Tracking Stations

- **Outer Tracker**
 - 5.0 mm Straws
 - Double-layer straws

- **Silicon Strips**
 - 198 μm pitch
 - 1-2 sensor ladders
 - 4 layers: XUVX
 - 336 ladders to be aligned

- **Inner Tracker**
 - 125.6 mm

Trigger Tracker (TT)

Silicon Strips
- 183 μm pitch
- 128 7-sensor ladders
- 128 ladders to be aligned
Magnetic Field

Very small field in VELO

Non-zero field in region of TT integral part of trigger: $\Delta p/p \sim 30\%$

Non-uniform, non-negligible field in region of T Stations

$$\int B \, dl = 4 \, Tm$$

$$\int B \, dl = 0.12 \, Tm$$
Silicon Strips
- 183 μm pitch
- 128 7-sensor ladders
- 4 layers: X,U(5°),V(-5°),X
- 128 ladders to be aligned
- 2% occupancy, max.
Inner Tracker

Silicon Strips
- 198 μm pitch
- 1-2 sensor ladders
- 4 layers: XUVX
- 336 ladders to be aligned, 6 pars each

Strip Occupancy
Outer Tracker

- Very large!
- 5.0 mm Straws
- Double-layer straws
- Single Hit Resolution ~ 200 μm.
- High occupancy

Detector is planar to within 0.9 mm
Hardware Alignment at LHCb

- Generally, fiducial points on all detectors will be surveyed by the TS-SU group at CERN.

- Precision is typically 0.3-0.5 mm (1σ) level in X, Y and Z, depending on the precision needed. VELO box surveyed to 0.3 mm.

- All points given with respect to the global LHCb frame nominal interaction point is (0,0,0).

- Where appropriate, these will be used to determine the starting values for various alignment parameters.
 (After translation from external measurements to internal positions)
General Strategies
- Magnet OFF data crucial
 - Separate magnetic field effects from geometrical ones.
 - Commissioning
 - After access to service tracking system
 - Otherwise, periodically, based on unexplainable change in alignment

- Pre-selected track samples
 - Low multiplicity events
 - Isolation requirements around track
 - Magnet OFF: Use energy from calorimeter

- Magnet ON data
 - Tweak alignments from Magnet OFF
 - Cross-check with K_s, J/ψ, Y, $D \to K\pi$, Z^0, etc
 (after dE/dx corrections and B field map validated)
General Flow of Alignment

- **VELO Alignment**
 - Align +X (-X) modules to one another
 - Align +X VELO to -X VELO

- **IT Alignment**
 - Align IT to OT using overlap regions and tracks with hits in both detectors

- **OT Alignment**
 - Align OT to the system

- **Align VELO to IT/OT System**
 - Align TT using long tracks

- **After Tracking System Alignment**
 - Align RICH
 - Align ECAL
 - Align HCAL
 - Align MUON

Authors:
- S. Viret
- A. Hicheur
- S. Blusk
- A. Papanestis
Tracking System, Expected Performance

Momentum resolution

Impact parameter resolution

$\delta p/p = 0.35\% - 0.55\%$

$\sigma_{IP} = 14\mu + 35\mu/p_T$
Some Impacts of Misalignment
Random Velo Misalignment

Mechanical placement, $\sigma < 20 \, \mu\text{m}$,

S. Viret
Misalignment of OT

- Tracking robust against misalignments up to \(\sim 500 \, \mu\text{m} \), but:
 - \(\sim 20\% \) degradation in momentum (not acceptable from physics view)
 - fewer hits per track
- Expect transverse alignment to be at the \(\sim 50 \, \mu\text{m} \) level, or better.

![Graph showing misalignment in X in T1 & T3: Scaled Tracking Efficiency](image)

For misalignments larger than 3 mm the hits of T1 are ignored.

![Graph showing momentum resolution](image)

- Gaussian width
- For misalignments larger than 3 mm the hits of T1 are ignored.

E. Bos

- Tracking robust against misalignments up to \(\sim 500 \, \mu\text{m} \), but:
 - \(\sim 20\% \) degradation in momentum (not acceptable from physics view)
 - fewer hits per track
- Expect transverse alignment to be at the \(\sim 50 \, \mu\text{m} \) level, or better.

Toy MC; Gaussian Smearing of Momentum

- \(\overline{B}^0 \rightarrow K^+\pi^- \)
- \(B_s \rightarrow K^+\pi^- \)

\[\sigma_{p/p} = 0.004 \quad \text{and} \quad \sigma_{p/p} = 0.005 \]
VELO – TT Misalignment @ L1

- Fraction of tracks above 2.5 GeV p_T
- Double apparent rate at ~ 300 micron miss alignment
- Trigger requires X misalignment below ~100 micron
Summary

- LHCb Trigger requires “good” online alignment
- Extraction/re-insertion of VELO every fill requires updating of some subset of alignment constants
 - Probably default alignment constants from previous run to start off (aside from an overall ΔX (ΔY) from VELO motion controller between fills)
 - Update if “necessary”
- Large number of planes and overlap regions facilitate alignment
- Magnet OFF data critical to decoupling geometry from B field effects
 - More work needed on proving that dE/dx and B field mapping “issues” can be de-convoluted.
- Fine tuning of alignment for final offline analysis.
- Monitoring:
 - Low-level: #Hits/track, χ^2, IP, residuals, #tracks/event, etc
 - High level: Masses, mass resolutions, relative particle yields.