Global Alignment in LHCb

Steve Blusk Syracuse University

LHC Alignment Workshop, Sept 4-6, 2006

Introduction

General strategy is to use Millepede for internal detector alignment
 VELO, using tracks reconstructed with VELO hits only
 IT, OT and IT-to-OT using hits in IT/OT only

Need to bring each sub-detector into relative alignment
 VELO to IT/OT
 VELO/IT/OT to TT

Ζ

Connection to the global reference frame

X

У

Align IT/OT to VELO

General Strategy

□ Perform relative VELO-to-IT/OT alignment using $\Delta X, \Delta Y$ at the center of magnet and $\Delta \theta_X, \Delta \theta_Y$ (each vs X, Y).

- ΔX , ΔY , $\Delta \theta_X$, $\Delta \theta_Y$ must all peak at 0 (vs X, Y, as well) for proper alignment
- With magnet OFF data the 7 relative misalignments can be determined

- 3 translations, rotation around Z axis, Shearing along X, Y, & Z scaling

Simulations

5000 minimum bias events
 P_{trk} > 20 GeV/c, VELO slopes < 100 mrad, T slopes < 200 mrad
 Can use energy in calorimeter for magnet off data, if needed (E_{dep}>10 GeV)
 Extract misalignments by fitting 1D distributions for:
 X offset:

 ΔY

- Y offset:
- X Rotation Angle:
- Y Rotation Angle:
- Z Rotation Angle:
- Z offset:
- Z scale:

 $\Delta \Theta_{X}$ $\Delta \Theta_{Y}$ $\Delta \phi = \phi_{T} - \phi_{VELO}$ $\Delta Z = \Delta X / \Theta_{X}$ $\Delta Scale_{Z} = (\Theta_{X}^{T} - \Theta_{X}^{VELO}) / \Theta_{X}^{VELO}$

Events generated with shifted geometries, reconstructed with nominal - Magnet OFF & Magnet ON

 ΔX , ΔY evaluated at the center of the dipole magnet

VELO-to-IT/OT - X Translation, B=0 (1 mm X translation)

Offset	Expected	Fit Value (mm, mrad)
$\Delta \Theta_{\rm X}$	0	0.012
$\Delta \Theta_{ m Y}$	0	-0.004
ΔX	-1	0.96±0.02
ΔY	0	0.005 ± 0.004
$\Delta\gamma$	0	0.056±0.014
ΔZ	0	0.7±0.9

VELO-to-IT/OT, B=0 2 mrad Z Rotation

Offset	Expected	Fit Value (mm, mrad)	83000 - (a) E 22000 -
$\Delta \Theta_{\rm X}$	0	-0.004	
$\Delta \Theta_{ m Y}$	0	0.012	-0.01 -0.00
ΔΧ	-1	0.031	E2000 - (c)
ΔΥ	0	0.005	
Δγ	0	2.0±0.28	
ΔZ	0	0.7	42000 -

Magnet ON, ΔX , ΔY , ΔZ , $\Delta \gamma$

Offset	Expected (mm,mrad)	Fit Value (mm, mrad)
$\Delta \Theta_{\rm X}$	N/a	N/a
$\Delta \Theta_{ m Y}$	0	0.04
ΔΧ	-0.25	0.253±0.023
ΔΥ	+0.25	0.200±0.054
Δγ	2	2.38±0.24
ΔZ	4.0	0.32±0.12

A second option

- With B=0 data, could also project high momentum tracks into TT, IT, OT and do a residual-based alignment.
- This may be helpful, especially for OT, where the LR ambiguity adds to the hit confusion.
- Still needs to be explored

Alignment of Other Detectors

After VELO and T-Stations brought into alignment, TT (Trigger Tracker) is aligned to the VELO/T-Station system.
 Residual-based alignment, work in progress here.

□ Other detectors rely on a well-aligned tracking system

□ RICH most sensitive, see talk by Antonis Papanestis

□ ECAL (HCAL) using electrons (hadrons)

□ Muon system using muon candidates □ J/ ψ for improved purity

Connection to the Global Frame

Every fill, the VELO is "re-centered" on the beam.

❑VELO motion controller gives VELO position to 10 µm accuracy.
 → Absolute coordinates of VELO only known to this accuracy.

□ Since rest of detector is aligned to VELO, absolute LHCb coordinate are only known to ~10 μ m.

□ This is fine, since relative alignments, where needed (e.g. VELO), will be much better than this.

□So, what defines the absolute coordinate system?

- Define it at the beginning of the run
- □ Then, track changes using the readback from the motion controller

□ VELO well advanced on implementation and misalignment studies

□ Further development of algorithms and infrastructure for IT, OT, TT in progress. Expect results soon...

□ Aim for a common set of tools/interfaces shared by various alignment tasks.

□ Need to automate the alignment tasks, as they will run in real time, online.

Online alignment important for trigger, but pretty robust against small misalignments.