Algorithms and Software for Hardware Alignment Systems

Pedro Arce (CIEMAT)

LHC Detector Alignment Workshop
Outline

• Optical alignment
 • The CMS optical alignment system
 • The problem of optical alignment and how to solve it
 • COCOA

• Effect of misalignment in the reconstruction

• Alignment with tracks

• Commonalities and difference of the several alignment softwares
The CMS optical alignment system

CMS elements suffer movements and deformations from magnetic field, gravity and temperature (∼ several mm)

We need precision ∼ 150 μm:
- Monitor Muon Chambers relatively among them
 - Align. internal Muon Barrel
 - Align. internal Muon Endcap
- Monitor Muon Ch. w.r.t. Tracker
 - Align. Muon ↔ Tracker (‘Link’)
- Monitor Tracker Sensors relatively among them
 - Align. Internal Tracker

4 subsystems with quite different hardware
SIMULATION:

• Error propagation:
 • Calculate how much the errors of the calibrated parameters and of the measurements affect the errors of the parameters we want to measure

• Redundancies:
 • How much the errors change if some measurement disappears

• Range:
 • When a measurement will get out of the range of the measuring device if some objects move
The problem (II)

RECONSTRUCTION:

- Optical system takes measurements (2D sensors, 1D sensors, tilmeters, distancemeters)
 ⇒ results are not what expected by extrapolating measured and calibrated parameters. Why?
 - Wrong rotation / position of some objects
 - Wrong internal calibration of some objects
 - wedge of a splitter
 - internal calibration of a distancemeter
 - deviation when traversing a sensor
 - ...

- Software is the same for Simulation and Reconstruction
 - Only difference: for Simulation measurement is ideal, for Reconstruction measurement is real
Get the equations of how each measurement depends on all these parameters

- positions, rotations and internal parameters

\[M_1 = f_1(p_1, p_2, \ldots, p_m) \]
\[M_2 = f_2(p_1, p_2, \ldots, p_m) \]
\[\ldots \]
\[M_n = f_n(p_1, p_2, \ldots, p_m) \]

\(M_1, \ldots, M_n = \text{Measurements} \)
\(p_1, \ldots, p_m = \text{parameters (known and unknown)} \)
\(f_i \text{ are non linear equations} \)

You know the measurements and some calibrated parameters, you need to know the missing ones

⇒ Solve the system of equations: Non-linear least squares fit

• To solve a system of equations, you do not have to know the equations
Only derivatives are needed

Get the derivatives with a numerical method

- Reproduce a measurement with initial parameters (e.g. propagate a laser until the sensor)
- Move a parameter and see how the measurement value changes
- Repeat n times moving $1/2^i$, until it converges

Total CMS alignment system: 40000 parameters

- big and sparse matrices
- sparse matrix library (meschach C library)
Cms Object-oriented Code for Optical Alignment

- General purpose software to simulate and reconstruct optical alignment systems composed of any combination of

 \textit{laser, x-hair laser, source, lens, pinhole, mirror, plate splitter, cube splitter, rhomboid prism, optical square, sensor2D, sensor1D, COPS, distancemeter, distance target, tiltmeter, 'user defined'}

- Each object has internal parameters (planarity of a mirror, wedge between plates of a plate splitter, internal calibration of COPS...)

 \textit{'user defined': you can tell COCOA how much light shifts and deviates in the ASCII file}

- Reconstructs positions and angles of the objects from the measurement values
- Propagates the errors of the measurements and calibrations (including correlations)
Interactive 3D view
- VRML (Virtual Reality Modeling Language)
- IGUANA (Interactive Graphics for User ANAlysis)

Geometry
- ASCII files
- ROOT tree files

Calibrated data can be read from Oracle DB to update data on file

Interface with DAQ measurements
- ASCII files
- ROOT tree files

Calibrated data can be read from Oracle DB to update data on file

Output
- ASCII file
- Oracle DB

- Fully integrated with CMS software
 - Output interchangeable between COCOA and alignment with tracks sw
Full ISR setup in COCOA
(interactive 3D VRML view)

- Light source
- 2D sensor (ALMY/CCD)
- COPS sensor
- Tiltmeter
- Distancemeter
- Distance target
- **Documentation:**
 - Primer
 - User’s Guide
 - Advanced User’s Guide
 - Two examples explained with detail
 - dOxygen reference manual
How it works:

- Describe the system in an input ASCII file
 - Also from an XML file
- Select which parameters are unknown and which are known
- For the known one write the values
 - They can also be read from an Oracle DB
- Input the measurements
 - They can also be read from an ASCII file or a ROOT tree

COCOA provides **best values for unknown parameters**
(positions/rotations/internal parameters) compatible with measurements
and **propagate the errors** from the measurements and the known
parameters to the know and unknown parameters

- Also correct known parameters if current values do not provide a good fit
An example input file

// system composed of one laser, one periscope that holds a plate splitter and a mirror and two 2D sensors.

GLOBAL_OPTIONS
report.verbose 2
save_matrices 0
length_error_dimension 2
angle_error_dimension 2

PARAMETERS
pos_laser 0
posZ_periscope 1
posZ_sensor 1.1
err_pos 100
err_ang 100
prec_sens2D 5

SYSTEM_TREE_DESCRIPTION
object system laser periscope 2 sensor2D
object periscope plate_splitter mirror

SYSTEM_TREE_DATA
system s
laser laser // this is the laser centre
X pos_laser 1000 unk
Y pos_laser 1000 unk
Z pos_laser 0. fix
angles
X 0 err_ang unk
Y 0 err_ang unk
Z 0 err_ang cal
periscope peri
centre
X 0 err_pos cal
Y 0.25 err_pos cal
Z posZ_periscope err_pos cal
angles
X 0 err_ang cal
Y 0 err_ang cal
Z 0 err_ang cal
plate_splitter spli
ENTRY {
 length shiftX 0. 0. fix
 length shiftY 10. 0. fix
 angle wedgeX 0.0001 10 cal
 angle wedgeY 0.0001 10 cal
}

centre
 X 0 err_pos cal
 Y -0.25 err_pos cal
 Z 0. 0. cal

angles
 X 0 err_ang cal
 Y 0 err_ang cal
 Z 0 err_ang cal

mirror mirr
ENTRY {
 none planarity 0.1 0. cal
}

centre
 X 0 err_pos cal
 Y 0.25 err_pos cal
 Z 0. err_pos cal

angles
 X 0 err_ang cal
 Y 0 err_ang cal
 Z 0 err_ang cal

// now the two sensors

sensor2D sens1
 centre
 X 0 err_pos cal
 Y 0 err_pos cal
 Z posZ_sensor err_pos cal

 angles
 X 0 err_ang cal
 Y 0 err_ang cal
 Z 0 err_ang cal

sensor2D sens2
 centre
 X 0 err_pos cal
 Y 0.5 err_pos cal
 Z 0 err_pos cal

 angles
 X 0 err_ang cal
 Y 0 err_ang cal
 Z 0 err_ang cal

MEASUREMENTS
SENSOR2D
 s/laser & s/peri/spli:T & s/sens1
 H 0.1 prec_sens2D
 V -0.1 prec_sens2D

SENSOR2D
 s/laser & s/peri/spli:D & s/peri/mirr & s/sens2
 H 0.2 prec_sens2D
 V -0.1 prec_sens2D
Use of COCOA

- Several test benches
- Several design studies
- Simulation full CMS Link alignment system (3000 parameters)
- Simulation full CMS Muon Endcap system (6500 parameters)
- Reconstruction of ISR test (test of a full CMS muon alignment halfplane)
- Reconstruction of MTCC test (fraction of final design of CMS, with B field)
- Will be used in 2007 for final CMS hardware alignment systems
Muon Endcap Alignment: Full simulation view

Note: only small sample of analog sensors shown
Reconstruction of ISR test

• Proof of concept’ test of CMS alignment system: one full half-plane

Barrel
- 18 forks (4 light sources each)
- 3 double cameras
- 3 single cameras on MAB+z
- 120 measurements

Endcap
- 2 x-hair lasers
- 7 COPS
- transfer plate with 2 COPS
- 1 COPS on MAB +Z
- 1 COPS on fake MA -Z
- 47 measurements

Link
- 2 laserboxes
- laser level
- 10 2D sensors
- 2 tubes
- 4 distancemeters
- 4 tiltmeters
- 312 measurements

• Input object parameters from calibrations
• Input object positions from survey
• Input measurements collected during August and September 2001
August

Link - survey measurement

error in each measurement = ± 0.176 ± 0.041
average (obtained with average of calibration values) = 0.254
statistical dispersion of measurements = ± 0.156

MAB centre Y

September

Link - survey measurement

error in each measurement = ± 0.0182 ± 0.056
average (obtained with average of calibration values) = -0.07
statistical dispersion of measurements = ± 0.033

ME angle Z
Full CMS Link alignment system (2865 parameters):

- **31 minutes** in Pentium III 850 MHz
- Memory: **590 Mb**
 - Due to the size of matrices
- Time and memory scales as \(\sim (#\text{param})^2 \)

\[\Rightarrow \text{we cannot simulate full CMS (~40k params)} \]
Several solutions under study:

- **Diminish the number of parameters**
 - Many parameters have a negligible effect in the final result
 - Needs a thorough testing to avoid biasing

- **Split the system in N parts**
 - There is no really independent subsystem though…

- **Use other library packages**
 - Millipede II, …