
Algorithms and Software
for

Hardware Alignment Systems

Pedro Arce (CIEMAT)

LHC Detector Alignment Workshop

• The problem of optical alignment and how to solve it

• COCOA

• Use of COCOA

• Time and memory consumption

Outline

SIMULATION:

• Error propagation:
• Calculate how much the errors of the calibrated parameters and of
the measurements affect the errors of the parameters we want to
measure

• Redundancies:
• How much the errors change if some measurement disappears

• Range:
• When a measurement will get out of the range of the measuring
device if some objects move

The problem

RECONSTRUCTION:
• Optical system takes measurements (2D sensors, 1D sensors,
tiltmeters, distancemeters)
⇒ results are not what expected by extrapolating measured and
calibrated parameters. Why?

• Wrong rotation / position of some objects
• Wrong internal calibration of some objects

• wedge of a splitter
• internal calibration of a distancemeter
• deviation when traversing a sensor
• ...

• Software is the same for Simulation and Reconstruction
• Only difference: for Simulation measurement is ideal, for
Reconstruction measurement is real

The problem (II)

Get the equations of how each measurement depends on all these
parameters

• positions, rotations and internal parameters

M1 = f1(p1, p2,…, pm)
M2 = f2(p1, p2,…, pm) M1,…, Mn = Measurements
… p1,…,pm = parameters (known and unknown)
Mn = fn(p1, p2,…, pm) fi are non linear equations

You know the measurements and some calibrated parameters, you need to

know the missing ones

⇒ Solve the system of equations: Non-linear least squares fit
• To solve a system of equations, you do not have to know the
equations

How to solve it

• Only derivatives are needed

⇒ Get the derivatives with a numerical method

• Reproduce a measurement with initial parameters (e.g. propagate a laser until the sensor)

• Move a parameter and see how the measurement value changes

• Repeat n times moving 1/2i, until it converges

Total CMS optical alignment system: 40000 parameters

⇒ big and sparse matrices
⇒ sparse matrix library (meschach C library)

How to solve it (II)

Cms Object-oriented Code for Optical Alignment
♦ General purpose software to simulate and reconstruct optical
alignment systems composed of any combination of

laser, x-hair laser, source, lens, pinhole, mirror, plate splitter,
cube splitter, rhomboid prism, optical square, sensor2D, sensor1D,

COPS, distancemeter, distance target, tiltmeter, ‘user defined’
• Each object has internal parameters (planarity of a mirror, wedge between
plates of a plate splitter, internal calibration of COPS...)

• ´user defined´: you can tell COCOA how much light shifts and deviates in
the ASCII file

Reconstructs positions and angles of the objects from the
measurement values

Propagates the errors of the measurements and calibrations
(including correlations)

COCOA

COCOA
Interactive 3D view

• VRML (Virtual Reality Modeling Language)
• IGUANA (Interactive Graphics for User ANAlysis)

Geometry
• ASCII files
• XML files (CMS format)

Calibrated data can be read from Oracle DB to update data on geometry file
Interface with DAQ measurements

• ASCII files
• ROOT tree files

Output
• ASCII file
• Oracle DB

Fully integrated with CMS software
• Output interchangeable between COCOA and alignment with tracks sw

06/06/01

Full ISR setup in COCOA
(interactive 3D VRML view)

1

Light source
2D sensor (ALMY/CCD)

Tiltmeter
COPS sensor

Distancemeter
Distance target

Documentation:
Primer
User’s Guide
Advanced User’s Guide
Two examples explained with detail
dOxygen reference manual

COCOA

How it works:
• Describe the system in an input ASCII file

• Also from an XML file
• Select which parameters are unknown and which are known
• For the known one write the values

• They can also be read from an Oracle DB
• Input the measurements

• They can also be read from an ASCII file or a ROOT tree

COCOA provides best values for unknown parameters
(positions/rotations/internal parameters) compatible with measurements and
propagate the errors from the measurements and the known parameters to
the know and unknown parameters

Also correct known parameters if current values do not provide a good fit

COCOA

// system composed of one laser, one periscope that
holds a plate splitter and a mirror and two 2D
sensors.

GLOBAL_OPTIONS
report_verbose 2
save_matrices 0
length_error_dimension 2
angle_error_dimension 2

PARAMETERS
pos_laser 0
posZ_periscope 1
posZ_sensor 1.1
err_pos 100
err_ang 100
prec_sens2D 5

SYSTEM_TREE_DESCRIPTION
object system laser periscope 2 sensor2D
object periscope plate_splitter mirror

SYSTEM_TREE_DATA
system s
laser laser // this is the laser
centre
X pos_laser 1000 unk
Y pos_laser 1000 unk
Z pos_laser 0. fix

angles
X 0 err_ang unk
Y 0 err_ang unk
Z 0 err_ang cal

periscope peri
centre
X 0 err_pos cal
Y 0.25 err_pos cal
Z posZ_periscope err_pos cal

angles
X 0 err_ang cal
Y 0 err_ang cal
Z 0 err_ang cal

An example input file

plate_splitter spli
ENTRY {
length shiftX 0. 0. fix
length shiftY 10. 0. fix
angle wedgeX 0.0001 10 cal
angle wedgeY 0.0001 10 cal

}
centre
X 0 err_pos cal
Y -0.25 err_pos cal
Z 0. 0. cal

angles
X 0 err_ang cal
Y 0 err_ang cal
Z 0 err_ang cal

mirror mirr
ENTRY {
none planarity 0.1 0. cal

}
centre
X 0 err_pos cal
Y 0.25 err_pos cal
Z 0. err_pos cal

angles
X 0 err_ang cal
Y 0 err_ang cal
Z 0 err_ang cal

// now the two sensors
sensor2D sens1
centre
X 0 err_pos cal
Y 0 err_pos cal
Z posZ_sensor err_pos cal

angles
X 0 err_ang cal
Y 0 err_ang cal
Z 0 err_ang cal

sensor2D sens2
centre

X 0 err_pos cal
Y 0.5 err_pos cal
Z 0 err_pos cal

angles
X 0 err_ang cal
Y 0 err_ang cal
Z 0 err_ang cal

MEASUREMENTS
SENSOR2D
s/laser & s/peri/spli:T & s/sens1
H 0.1 prec_sens2D
V -0.1 prec_sens2D

SENSOR2D
s/laser & s/peri/spli:D & s/peri/mirr & s/sens2
H 0.2 prec_sens2D
V -0.1 prec_sens2D

- Several desing studies

- Several test benches

- Simulation full CMS Link alignment

system (3000 parameters)

-Simulation full CMS Muon Endcap

system (6500 parameters)

- Reconstruction of ISR test (test of a full CMS muon alignment halfplane)

- Reconstruction of MTCC test (fraction of final design of CMS, with B field)

- Will be used in 2007 for final CMS hardware alignment systems

Use of COCOA

4 subsystems with quite
different hardware

The CMS optical alignment system
CMS elements suffer movements and
deformations from magnetic field, gravity
and temperature
(≈ several mm)

We need precision ≈ 150 μm:
Monitor Muon Chambers relatively among

them
- Align. internal Muon Barrel
- Align. internal Muon Endcap

Monitor Muon Ch. w.r.t. Tracker
- Align. Muon ↔ Tracker (‘Link’)

Monitor Tracker Sensors relatively among
them

- Align. Internal Tracker

R-sensors

Z-sensors

Note: only small
sample of analog
sensors shown

Clinometers
Transfer plate

DCOPS

Muon Endcap Alignment: Full simulation view

Barrel
18 forks (4 light sources each)
3 double cameras
3 single cameras on MAB+z
120 measurements

Endcap
2 x-hair lasers
7 COPS
transfer plate with 2 COPS
1 COPS on MAB +Z
1 COPS on fake MA -Z
47 measurements

1

• ‘Proof of concept’ test of CMS alignment system: one full half-plane

• Input object parameters from calibrations
• Input object positions from survey
• Input measurements collected during August and September 2001

Link
2 laserboxes
laser level
10 2D sensors
2 tubes
4 distancemeters
4 tiltmeters
312 measurements

Reconstruction of ISR test

August September

Full CMS Link alignment system (2865 parameters):

• 31 minutes in Pentium III 850 MHz

• Memory: 590 Mb

• Due to the size of matrices

• Time scales as ∼(#param)3 and memory scales as ∼(#param)2!

⇒ we cannot simulate full CMS (∼40k params)

Time and memory consumption

☺ Several solutions under study:
• Diminish the number of parameters

• Many parameters have a negligible effect in the final result
• Needs a thorough testing to avoid biasing

• Split the system in N parts
• There is no really independent subsystem though…

• Use other library packages
• Millipede II, …

Time and memory consumption

