

Track based Alignment in CMS

Frank-Peter Schilling (CERN)

LHC Detector Alignment Workshop 05/09/2006

Contents:

- Data samples
- Alignment strategy
- Alignment algorithms
 - HIP
 - Kalman Filter
 - Millepede-II
- Muon alignment with tracks

Track based Alignment in CMS

- Large number of alignment parameters (~100,000 in tracker) requires novel techniques
- Three different alignment algorithms implemented in CMS reconstruction software (now transition from "ORCA" to "CMSSW")
 - Kalman Filter, Millepede-II, HIP Algorithm
 - Cross check results using different algorithms with different approaches and systematics
 - Supported by common software infrastructure
- Alignment using different data sets (dedicated MC generators)
 - Muons from Z,W; Cosmics; beam halo; muons from J/ψ, B; high pt QCD tracks

- Reduced data format (AlCaReco)
 - Development of fast Alignment stream (Z,W) produced during prompt reconstruction at Tier-0
- Combine track based alignment with laser alignment and survey data
- Employ mass and vertex constraints; use of overlaps
- Develop observables sensitive to misalignment other than χ²
 Monitoring, fix χ² invariant mode
- CMS alignment group ~20 people from ~8 institutes

Data Samples

- High p_T muons from Z,W decays
 - $\hfill\square$ Rate: 20k Z ${\rightarrow}\mu\mu$, 100k W ${\rightarrow}\mu\nu$ per day at L=2*10^{33}
 - Gold plated for tracker alignment (small multiple scattering)
 - □ Exploit Z⁰ mass constraint
- Cosmic Muons
 - □ ~400Hz after L1 and s.a. muon reco.
- Beam Halo Muons
 - \square ~5 kHz per side after L1 and s.a. muon
 - Problem: Muon endcap trigger outside tracker acceptance in R!
 - Potentially install scintillators (for startup) or use TOTEM T1
- Muons from J/ψ and inclusive B decays
 J/ψ mass constraint
- Min. bias, high pt hadrons from QCD events
 - Potentially useful for pixel alignment

Simulation of Cosmics and Beam halo muons in CMS

Beam halo muons: 5 kHz per side

Alignment Strategy

Basic scetch:

- 2007: Before beams:
 - □ Cosmics (+laser alignment and survey measurements)
- 2007: single beams
 - add beam halo muons
- 2007: Pilot run, pixel detector not installed (except few test modules)
 - □ Cosmics, beam halo muons
 - □ add available high pt muons, tracks
 - □ Initial alignment of high level strip tracker structurs (layers, rods)?
- 2008:Two-step approach:
 - □ Add Larger statistics of muons from Z,W
 - □ 1. Standalone alignment of pixel detector
 - □ 2. Alignment of strip tracker, using pixel as reference
- To be layed out in more detail ...

See next slides for rate estimates

Expected event rates

Pilot run 2007 @ 900 GeV, L~10²⁹

• Physics Run 2008 @ 14 TeV, L~10^{32...33}

Luminosity	$10^{32} { m cm}$	$n^{-2}s^{-1}$	$2 * 10^{33} \text{ cm}^{-2} \text{s}^{-1}$			
Time	few weeks	6 months	$1 \mathrm{day}$	few weeks	one year	
Int. Luminosity	100 pb^{-1}	$1 \ {\rm fb}^{-1}$		$1 \ {\rm fb^{-1}}$	$10 \ {\rm fb^{-1}}$	
$W^{\pm} \rightarrow \mu^{\pm} \nu$	700K	$7\mathrm{M}$	100K	$7\mathrm{M}$	70M	
$Z^0 ightarrow \mu^+ \mu^-$	100K	$1\mathrm{M}$	20K	$1\mathrm{M}$	10M	

 Large statistics of high pt muons within few weeks!

General Software Framework

- (MIs)alignment implemented at reconstruction level:
 - Misalignment tools", move and rotate modules or higher level structures
- Dedicated "Misalignment Scenarios"
 - □ Short term scenario
 - o First data taking (few 100 pb⁻¹)
 - o Pixel already aligned
 - o Strip tracker misaligned, only survey and laser alignment
 - □ Long term scenario
 - o Few fb⁻¹ accumulated
 - o Full alignment performed, residual misalignments ~20μm
- Fast track refit (without redoing pattern recognition)
- Reduced data format containing only alignment tracks
 - □ Small file size, fast processing

- Algorithms implemented in standard CMS reconstruction software using a common layer of general functionality
 - Management of parameters and covariances
 - Derivatives wrt track and alignment parameters
 - □ I/O, Database connection

HIP Algorithm: Formalism

Minimization of track impact point (x)

 hit (m) residuals in local sensor
 plane as function of alignment
 parameters

$$\epsilon = \begin{pmatrix} \epsilon_u \\ \epsilon_v \end{pmatrix} = \begin{pmatrix} u_{\mathsf{X}} - u_m \\ v_{\mathsf{X}} - v_m \end{pmatrix}$$

 χ² function to be minimized on each sensor (after many tracks per sensor accumulated)

$$\chi^{z} = \sum_{i} \epsilon_{i}^{I} V_{i}^{-1}$$

0

- □ V: covariance matrix of measurement
- Linearized χ^2 solution:
 - **Δ** δp: vector of alignment parameters $\delta p = (\delta u, \delta v, \delta w, \delta \alpha, \delta \beta, \delta \gamma)$
 - $\begin{array}{c} J_i: \text{ derivative of residuals w.r.t.} \\ \text{ alignment parameters} \end{array} \delta p = \left[\sum_i J_i V_i^{-1} J_i^T\right]^{-1} \left[\sum_i J_i V_i^{-1} \epsilon_i\right] \\ \end{array}$
- Local solution on each "alignable object"
 - Only inversion of small (6x6) matrices, computationally light

CMS Note 2006/018

HIP Algorithm: Formalism (cont.)

- o Formalism extended to alignment of composite detector structures (ladders, disks, layers etc.)
 - o Minimize χ^2 using all tracks crossing sensors of composite object with respect to alignment parameters of composite object
 - o Implemented using chain rule
- o Correlations between modules not included explicitely
- Implicitely included through iterations
- Large statistics → parallel processing:

05/09/2006

- Run on N cpu's processing 1/N of the full sample each
- Combine results from all CPUs, compute alignment corrections
- □ Stard next iteration on N cpu's

- reduced DST format keeps only muon tracks
- □ Refit track, don't re-reconstruct
- □ With 20 CPUs in parallel, one iteration: ~45'

۲

HIP Algorithm studies

- Alignment of 720 ∆x [Jum] 400 N(Alignables) Entries 720 After I Iterations: 300 500 Mean 1.964 - |=0 **CMS Pixel Barrel** 200 RMS 7.159 400 F |=1 100 -- 1=5 300 I=10 modules -100 200 -200 -300 100 -400 -300 -200 -100 200 400 0 100 300 Iteration $\Delta x [\mu m]$ "First data taking" ∆y [µm] 400 E N(Alignables) 720 Entries misalignment 300 500 E -2.55 Mean 200 RMS 6.843 400 100 scenario 300 -100 200 -200 □ Includes -300 100 -400 correlated -300 -200 -100 0 100 200 300 400 Iteration $\Delta y [\mu m]$ misalignments [mn] z⊻ 400 N(Alignables) Entries 720 160 300 Mean 9.151 140 120 200 RMS 23.13 100 **200K Z**⁰→μ⁺μ⁻ 80 -10060 -200 events, 10 -300 20 -400 iterations -200 10 -400 -300 -100 100 200 300 400 0 Iteration Δz [µm]
- Good convergence: RMS ~7 μ m in x,y ~23 μ m in z
 - Caveat: Alignment w.r.t ideal strip tracker

CMS Note 2006/018

05/09/2006 CMS Alignment Frank-Peter.Schilling@cern.ch

HIP Algorithm studies

504 Mean -16.43

27.73

 $\Delta x [\mu m]$

504

26.88

Δy [µm]

504

25.73

 $\Delta z [\mu m]$

Entries

RMS

Entries

Entries

RMS

Mean 3.142

RMS

Mean -1.597

- **Standalone alignment of** pixel modules
- Minimize influence of • misaligned strip detector:
 - refitting only pixel hits of the tracks
 - □ use momentum constraint from full track (significantly improves convergence)
- Two muons from $Z^0 \rightarrow \mu^+ \mu^-$ are fitted to common vertex
- **Flat misalignment** \pm **300** μ **m in x,y,z**
- 500k events, 19 iterations

Resonable convergence, RMS ~25µ m in all coordinates

Kalman Filter Alignment

- Method for global alignment derived from Kalman Filter
- Ansatz:
 - measurements m depend via track model f not only on track parameters x, but also on alignment parameters d:

$$m = f(x, d) + \epsilon$$
 $\operatorname{COV}(\epsilon) = V$

Update equation of Kalman Filter:

$$\begin{pmatrix} \hat{d} \\ \hat{x} \end{pmatrix} = \begin{pmatrix} d \\ x \end{pmatrix} + K(m-c-Ad-Bx)$$

□ For details, see talk by R. Fruehwirth!

- Iterative: Alignment Parameters updated after each track
- Global: Update not restricted to modules crossed by track
 - □ Update can be limited to those modules having significant correlations with the ones in current trajectory
 - **Requires some bookkeeping**
 - □ No large matrices to be inverted!
- Possibility to use prior information (e.g. survey data, laser al.)
- Can add mass / vertex constraints

CMS Note 2006/022

Kalman Filter Alignment (cont.)

- Wheel-like setup: (part of CMS tracker: 156 TIB modules)
- Pixel detector as reference
- Misalignment:
 - **□ local x,y** σ**=100**μm
- Update restricted to distance $d_{max} \leq 6$
- Single muons p_T=100 GeV
- Convergence slower in outer layers (distance from reference system, less track statistics)

Layer 1

CMS Note 2006/022

05/09/2006

Kalman Filter Alignment (cont.)

• Overall RMS ~21µm after alignment

• Dependence of RMS and CPU time on d_{max}

-				Пал				
d_{\max}	1	2	3	4	5	6		
σ [μ m]	24.75	21.38	20.97	20.95	20.94	20.94		
$T[\mathbf{s}]$	472	604	723	936	1152	1319		

• d_{max}=6 does not exclude modules with relevant correlations

- For formalism, see talk of V. Blobel
- Original Millepede method solves matrix eqn. Ax = B, by inverting huge matrix A. Can only be done for <12000 alignment parameters
- New Millepede II method instead minimises |A x B|. Expected to work for ~100000 alignment parameters (i.e. for full CMS at sensor level)
- Both successfully aligned ~12% of tracker modules using 2M $Z \rightarrow \mu\mu$ events. Results identical, but new method 1500 times faster!

05/09/2006

- Alignment of the strip tracker at sensor level
- Barrel region, $|\eta| < 0.9$, 12015 alignment parameters
- (Mis)alignment in ro. r. z. γ at half-barrel / laver / rod / module levels

CMS Alignment Frank-Peter.Schilling@cern.ch

CPU time in hours as a function of number of parameters

CPU Time for CMS (100k parameters): • Diagonalization ~10 year at one CPU • Inversion: ~1 year at one CPU • Iteration: ~1 h at one CPU

- New Millepede-II (iterative method) scaleable to full CMS problem
- Alternative: massively parallel algorithm (difficult to implement)
- Memory needs (dep. on sparseness of matrix) under study...

- Collision tracks and cosmics populate different parts of global covariance matrix → reduce global correlations!
- Example: Alignment of CMS strip barrel rods and layers
 - Only one layer fixed
 - □ 500k $Z^0 \rightarrow \mu\mu$ with vertex constraint
 - □ 100k Cosmics
- Use Z⁰ tracks only:
 - No solution
 - □ Matrix singular
- Use Z⁰ and Cosmics:
 - Problem solvable
 - □ Resonable correlations

Simplified simulation and scenario, Now look at realistic study ...

Global correlations: Realistic scenario

- Realistic alignment scenario of the CMS pixel and strip barrel studied
- Dasets and prior information:
 - □ 250k Z⁰ \rightarrow µµ with vertex constraint
 - □ 500k Cosmics
 - □ Survey information
- Global correlations of alignment parameters high (can be >99%)
 - Independent of alignment algorithm!
- Cosmics (and beam halo, shifted vertex?!) very important to decrease global correlations!

M. Stoye (Hamburg)

- **Correlations of translations in x**
- layers/halfbarrels and
- halfbarrels/CMS

global X

0 0.2

20

Standalone muon alignment using $W \rightarrow \mu \nu$ events corresponding to 50h of data taking at 10³⁴

CMS Note 2006/016

Estimator for MB1

Aligned

- 790 chambers \Rightarrow "only" ~5000 alignment parameters
- Main differences w.r.t. Tracker ٠ **Alignment:**
 - □ Large amount of material for tracks crossing barrel-endcap
 - □ Chambers assumed as rigid body: provide vector information useable for alignment
- Two approaches
 - □ Alignment using tracks extrapolated from tracker
 - Standalone muon alignment

Aligned

Estimator for MB2

Conclusions

- Alignment of the CMS tracker and muon system is a challenge
 - □ Large number of parameters (~100,000 in tracker)
 - □ High intrinsic resolution of devices
- A lot of ongoing work on track based alignment already now
 - □ Implementation and further development of algorithms
 - o Initial results promising
 - o Not yet demonstrated realistic alignment of full tracker at sensor level
 - □ Alignment studies using various MC data sets
 - Dedicated HLT alignment stream
 - □ Use of overlaps, mass and vertex constraints
 - □ How to combine with Laser Alignment and Survey?
 - **D** Define monitoring observables other than χ^2 ("global modes")
 - Condition Database infrastructure
- Alignment of test beam and cosmics data
 - □ Tracker "Cosmic Rack" test structure
 - □ Magnet Test & Cosmic Challenge (MTCC) data
- Aim for having all ingredients in place when data will arrive!