Track based Alignment in CMS

Frank-Peter Schilling (CERN)
LHC Detector Alignment Workshop 05/09/2006

Contents:
- Data samples
- Alignment strategy
- Alignment algorithms
 - HIP
 - Kalman Filter
 - Millepede-II
- Muon alignment with tracks
Track based Alignment in CMS

- Large number of alignment parameters (~100,000 in tracker) requires novel techniques
- Three different alignment algorithms implemented in CMS reconstruction software (now transition from “ORCA” to “CMSSW”)
 - Kalman Filter, Millepede-II, HIP Algorithm
 - Cross check results using different algorithms with different approaches and systematics
 - Supported by common software infrastructure
- Alignment using different data sets (dedicated MC generators)
 - Muons from Z,W; Cosmics; beam halo; muons from J/ψ, B; high pt QCD tracks
- Reduced data format (AlCaReco)
 - Development of fast Alignment stream (Z,W) produced during prompt reconstruction at Tier-0
- Combine track based alignment with laser alignment and survey data
- Employ mass and vertex constraints; use of overlaps
- Develop observables sensitive to misalignment other than χ^2
 - Monitoring, fix χ^2 invariant mode
- CMS alignment group ~20 people from ~8 institutes
Data Samples

- **High p_T muons from Z,W decays**
 - Rate: $20k \ Z \to \mu\mu$, $100k \ W \to \mu\nu$ per day at $L=2\times10^{33}$
 - Gold plated for tracker alignment (small multiple scattering)
 - Exploit Z^0 mass constraint

- **Cosmic Muons**
 - ~400Hz after L1 and s.a. muon reco.

- **Beam Halo Muons**
 - ~5 kHz per side after L1 and s.a. muon
 - Problem: Muon endcap trigger outside tracker acceptance in R!
 - Potentially install scintillators (for startup) or use TOTEM T1

- **Muons from J/ψ and inclusive B decays**
 - J/ψ mass constraint

- **Min. bias, high pt hadrons from QCD events**
 - Potentially useful for pixel alignment
Simulation of Cosmics and Beam halo muons in CMS

- Cosmic muons: 400 Hz
- Beam halo muons: 5 kHz per side

- Rates after L1 and standalone muon reconstruction
Alignment Strategy

Basic sketch:

- **2007: Before beams:**
 - Cosmics (+laser alignment and survey measurements)
- **2007: single beams**
 - Add beam halo muons
- **2007: Pilot run, pixel detector not installed (except few test modules)**
 - Cosmics, beam halo muons
 - Add available high pt muons, tracks
 - Initial alignment of high level strip tracker structures (layers, rods)?

- **2008: Two-step approach:**
 - Add larger statistics of muons from Z,W
 - 1. Standalone alignment of pixel detector
 - 2. Alignment of strip tracker, using pixel as reference

- To be layed out in more detail …

See next slides for rate estimates
Expected event rates

- **Pilot run 2007 @ 900 GeV, L~10^{29}**

 What data samples in 2007 ?

 - ATLAS preliminary

 $\sqrt{s} = 900$ GeV, $L = 10^{29} \text{ cm}^{-2} \text{s}^{-1}$

 - 30% data taking efficiency included (machine plus detector)
 - Trigger and analysis efficiencies included

 F. Gianotti (ICHEP 2006)

 - Loads of min. bias, QCD jets
 - Not much of anything else …

- **Physics Run 2008 @ 14 TeV, L~10^{32...33}**

<table>
<thead>
<tr>
<th>Luminosity</th>
<th>$10^{32} \text{ cm}^{-2} \text{s}^{-1}$</th>
<th>$2\times10^{33} \text{ cm}^{-2} \text{s}^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time Int. Luminosity</td>
<td>few weeks 6 months</td>
<td>1 day few weeks one year</td>
</tr>
<tr>
<td></td>
<td>100 pb^{-1} 1 fb^{-1}</td>
<td>1 fb^{-1} 10 fb^{-1}</td>
</tr>
<tr>
<td>$W^\pm \rightarrow \mu^\pm \nu$</td>
<td>700K 7M</td>
<td>100K 7M 70M</td>
</tr>
<tr>
<td>$Z^0 \rightarrow \mu^+ \mu^-$</td>
<td>100K 1M</td>
<td>20K 1M 10M</td>
</tr>
</tbody>
</table>

 - Large statistics of high pt muons within few weeks!
General Software Framework

• (MIs)alignment implemented at reconstruction level:
 - “Misalignment tools”, move and rotate modules or higher level structures
• Dedicated “Misalignment Scenarios”
 - Short term scenario
 - First data taking (few 100 pb⁻¹)
 - Pixel already aligned
 - Strip tracker misaligned, only survey and laser alignment
 - Long term scenario
 - Few fb⁻¹ accumulated
 - Full alignment performed, residual misalignments ~20μm
• Fast track refit (without redoing pattern recognition)
• Reduced data format containing only alignment tracks
 - Small file size, fast processing

• Algorithms implemented in standard CMS reconstruction software using a common layer of general functionality
 - Management of parameters and covariances
 - Derivatives wrt track and alignment parameters
 - I/O, Database connection
HIP Algorithm: Formalism

- Minimization of track impact point \((x) \)
 - hit \((m) \) residuals in local sensor plane as function of alignment parameters

\[\mathbf{ε} = \begin{pmatrix} \epsilon_u \\ \epsilon_v \end{pmatrix} = \begin{pmatrix} u_x - u_m \\ v_x - v_m \end{pmatrix} \]

- \(\chi^2 \) function to be minimized on each sensor (after many tracks per sensor accumulated)
 - \(V \): covariance matrix of measurement

- Linearized \(\chi^2 \) solution:
 - \(\delta p \): vector of alignment parameters
 \(\delta p = (\delta u, \delta v, \delta w, \delta α, \delta β, δγ) \)
 - \(J_i \): derivative of residuals w.r.t. alignment parameters

\[\delta p = \left[\sum_i J_i V_i^{-1} J_i^T \right]^{-1} \left[\sum_i J_i V_i^{-1} \epsilon_i \right] \]

- Local solution on each “alignable object”
 - Only inversion of small (6x6) matrices, computationally light

CMS Note 2006/018
HIP Algorithm: Formalism (cont.)

- Formalism extended to alignment of composite detector structures (ladders, disks, layers etc.)
 - Minimize χ^2 using all tracks crossing sensors of composite object with respect to alignment parameters of composite object
 - Implemented using chain rule
 - Correlations between modules not included explicitly
 - Implicitly included through iterations
 - Large statistics \rightarrow parallel processing:
 - Run on N cpu’s processing 1/N of the full sample each
 - Combine results from all CPUs, compute alignment corrections
 - Start next iteration on N cpu’s

$$\frac{\delta \epsilon_i^S}{\delta p_{i}^C} = \frac{\delta \epsilon_i^S}{\delta p_{i}^S} \times \frac{\delta p_{i}^S}{\delta p_{i}^C}$$

- Example: 1M $Z\rightarrow\mu\mu$ events:
 - reduced DST format keeps only muon tracks
 - Refit track, don’t re-reconstruct
 - With 20 CPUs in parallel, one iteration: $\sim 45'$
HIP Algorithm studies

- Alignment of 720 CMS Pixel Barrel modules

- “First data taking” misalignment scenario
 - Includes correlated misalignments

- 200K $Z^0 \rightarrow \mu^+\mu^-$ events, 10 iterations

- Good convergence: RMS $\sim 7\mu m$ in x,y, $\sim 23\mu m$ in z

- Caveat: Alignment w.r.t ideal strip tracker

CMS Note 2006/018
HIP Algorithm studies

- Standalone alignment of pixel modules
- Minimize influence of misaligned strip detector:
 - refitting only pixel hits of the tracks
 - use momentum constraint from full track (significantly improves convergence)
- Two muons from $Z^0 \rightarrow \mu^+\mu^-$ are fitted to common vertex
- Flat misalignment $\pm 300\mu m$ in x,y,z
- 500k events, 19 iterations
- Reasonable convergence, RMS $\sim 25\mu m$ in all coordinates

CMS Note 2006/018
Kalman Filter Alignment

• Method for global alignment derived from Kalman Filter

• Ansatz:
 - measurements \(m \) depend via track model \(f \) not only on track parameters \(x \), but also on alignment parameters \(d \):
 \[
 m = f(x, d) + \epsilon \quad \text{COV}(\epsilon) = V
 \]
 - Update equation of Kalman Filter:
 \[
 \begin{pmatrix}
 \dot{d} \\
 \dot{x}
 \end{pmatrix} = \begin{pmatrix}
 d \\
 x
 \end{pmatrix} + K \left(m - c - Ad - Bx \right)
 \]
 - For details, see talk by R. Fruehwirth!

• Iterative: Alignment Parameters updated after each track
• Global: Update not restricted to modules crossed by track
 - Update can be limited to those modules having significant correlations with the ones in current trajectory
 - Requires some bookkeeping
 - No large matrices to be inverted!

• Possibility to use prior information (e.g. survey data, laser al.)
• Can add mass / vertex constraints

CMS Note 2006/022
Kalman Filter Alignment (cont.)

- Wheel-like setup: (part of CMS tracker: 156 TIB modules)
- Pixel detector as reference
- Misalignment:
 - local $x,y \sigma = 100 \mu m$
- Update restricted to distance $d_{\text{max}} \leq 6$
- Single muons $p_T = 100$ GeV

- Convergence slower in outer layers (distance from reference system, less track statistics)

CMS Note 2006/022
Kalman Filter Alignment (cont.)

- Overall RMS $\sim 21\mu m$ after alignment

- Dependence of RMS and CPU time on d_{max}

<table>
<thead>
<tr>
<th>d_{max}</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma [\mu m]$</td>
<td>24.75</td>
<td>21.38</td>
<td>20.97</td>
<td>20.95</td>
<td>20.94</td>
<td>20.94</td>
</tr>
<tr>
<td>$T [s]$</td>
<td>472</td>
<td>604</td>
<td>723</td>
<td>936</td>
<td>1152</td>
<td>1319</td>
</tr>
</tbody>
</table>

- $d_{\text{max}}=6$ does not exclude modules with relevant correlations
Millepede II Algorithm

- For formalism, see talk of V. Blobel
- Original Millepede method solves matrix eqn. $Ax = B$, by inverting huge matrix A. Can only be done for <12000 alignment parameters
- New Millepede II method instead minimises $|Ax - B|$. Expected to work for ~100000 alignment parameters (i.e. for full CMS at sensor level)
- Both successfully aligned ~12% of tracker modules using 2M $Z \rightarrow \mu\mu$ events. Results identical, but new method 1500 times faster!

Matrix Inversion (12000x12000)
(t=13h)

MinRes
(t=30s, 1500x faster!)

CMS Note 2006/011
Millepede-II in CMS

- Alignment of the strip tracker at sensor level
- Barrel region, $|\eta|<0.9$, 12015 alignment parameters
- (Mis)alignment in $r\phi$, r, z, γ at half-barrel / layer / rod / module levels
CPU Requirements (Millepede-II)

CPU time in hours as a function of number of parameters

- New Millepede-II (iterative method) scaleable to full CMS problem
- Alternative: massively parallel algorithm (difficult to implement)
- Memory needs (dep. on sparseness of matrix) under study...

CPU Time for CMS (100k parameters):
- Diagonalization
 ~10 year at one CPU
- Inversion:
 ~1 year at one CPU
- Iteration:
 ~1 h at one CPU
Importance of using “complete” datasets

- Collision tracks and cosmics populate different parts of global covariance matrix → reduce global correlations!

- Example: Alignment of CMS strip barrel rods and layers
 - Only one layer fixed
 - 500k $Z^0 \rightarrow \mu\mu$ with vertex constraint
 - 100k Cosmics

- Use Z^0 tracks only:
 - No solution
 - Matrix singular

- Use Z^0 and Cosmics:
 - Problem solvable
 - Reasonable correlations

Simplified simulation and scenario, Now look at realistic study …
Global correlations: Realistic scenario

- Realistic alignment scenario of the CMS pixel and strip barrel studied
- Datasets and prior information:
 - 250k $Z^0 \rightarrow \mu\mu$ with vertex constraint
 - 500k Cosmics
 - Survey information
- Global correlations of alignment parameters high (can be >99%)
 - Independent of alignment algorithm!
- Cosmics (and beam halo, shifted vertex?!) very important to decrease global correlations!

M. Stoye (Hamburg)
Muon system Alignment with tracks

- 790 chambers ⇒ ”only” ~5000 alignment parameters

- Main differences w.r.t. Tracker Alignment:
 - Large amount of material for tracks crossing barrel-endcap
 - Chambers assumed as rigid body: provide vector information useable for alignment

- Two approaches
 - Alignment using tracks extrapolated from tracker
 - Standalone muon alignment

- Standalone muon alignment using $W \rightarrow \mu \nu$ events corresponding to 50h of data taking at 10^{34}

CMS Note 2006/016
Conclusions

• Alignment of the CMS tracker and muon system is a challenge
 • Large number of parameters (~100,000 in tracker)
 • High intrinsic resolution of devices

• A lot of ongoing work on track based alignment already now
 • Implementation and further development of algorithms
 o Initial results promising
 o Not yet demonstrated realistic alignment of full tracker at sensor level
 • Alignment studies using various MC data sets
 • Dedicated HLT alignment stream
 • Use of overlaps, mass and vertex constraints
 • How to combine with Laser Alignment and Survey?
 • Define monitoring observables other than χ^2 (“global modes”)
 • Condition Database infrastructure

• Alignment of test beam and cosmics data
 • Tracker “Cosmic Rack” test structure
 • Magnet Test & Cosmic Challenge (MTCC) data

• Aim for having all ingredients in place when data will arrive!