

More Information : http://lhc-detector-alignment-workshop.web.cem.ch

Organising Committee :

8. Blusk O. Buchmuller A. Jachol kowski	
S. Marii I Garda T. Ruf K. Safarik	(Valandia.) (CERN.) (CERN.)
	(Munich) (Glasgow)

LHC Detector Alignment Workshop Summary

David Brown, LBNL

Generalities

- Thanks to the organizers for inviting me
- I have learned at lot in 2 days, but
 - **Provide are the experts in LHC detector alignment**
 - I cannot do justice to everything I've heard
 - I will not waste your time by repeating back your own work
- I will provide a biased, eclectic outsiders view
 - I will not address 'settled' issues
 - Use of track 'reduced' residuals, Kalman fit tracks
 - Importance of complementary data
 - Utility of a-priori metrology
 - Intentionally provocative
 - So disrespect is intended!
 - Feel free to challenge me!

Summary Theme: Finding Balance

Division

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

Integration

'Iterative' vs 'closed form' optimization

Also known as

- **The Uncorrelated vs correlated**
- Global chisq vs local chisq
- Biased vs unbiased
- Both algorithms are really iterative
 - Sonlinearities, outlier rejection, ...
- Both algorithms can treat correlations
 - One explicitly, one implicitly
- Both algorithms are complex, elegant
- Both algorithms are only as accurate as the information that you feed them

There is no substitute for careful data preparation!

Optimization Algorithm Usage

- Iterative (residual chisq)
 - BaBar, CDF, STAR, Atlas, CMS, ALICE(?)
- Closed-form
 - SLD (SVD)
 - Zeus, H1, Atlas, CMS, LHCB, ALICE (Millepede)
 - 📽 CMS (Kalman)

Optimization Algorithm Comparison

	Iterative	Closed-form
# iterations to convergence	10→100	3→10
CPU cost/iteration	Refit tracks + N wafers 6X6 matrix inversions	Refit tracks + derivatives + matrix eqtn. soln.
Resolves global distortions?	Yes, by iteration (unknown scaling with NDOF)	untested
Monitoring access?	Simple	?
# processors that can be used	N wafers	1
Memory	α NDOF	α NDOF^X (~2)
Statistical precision	Biased (all residuals) or reduced (prescaling)	Optimal
David Brown 6 LHC Detector Alignment Workshop Sept. 6, 2006		

How Many Alignment Parameters? module, chamber as body module, pixel, subsystem chamber Monolithic with strip, as a rigid detector as rigid internal wire body body DOFs ~few 10⁵ 3X10⁶ ~100 6 ~10⁵ reasonable

DOFs

'How I Would Align an LHC Detector'

• Assemble a complementary set of event

Muons, pairs, cosmics, survey, …

• Align the innermost (most sensitive) detector first

Align internal DOFs with complimentary data

- Rigid body parameters plus non-planar distortions

• Align the next detector outwards next

- Include (aligned) innermost detector in track fit
- Align using standard techniques

Continue outwards

Include calorimeter, muon chambers

Repeat (if necessary)

Software Redundancy

• Overlapping software development is good

- Allows development of novel, risky solutions
- Provides a more complete exploration of problem space
- Competition encourages development and improvement
- Too much software overlap is bad
 - Manpower is wasted
 - Fragments groups by preventing standardization
- 4 different geometry packages for 4 experiments
 - Common functionality, common names
- 4(?) different conditions databases, descriptions of alignment parameters
- 2 different C++ implementations of Millepede
- 3 track-based alignment procedures in CMS

I would have liked to hear more about..

- Integrating hardware and track-based alignments
- Preparing a reasonable alignment for first physics
 Technique, resources needed, timescale
- Untangling overlapping effects (Tobias)

Material, B field, Alignment, Detector malfunction

- Outlier rejection
- Alignment procedure instrumentation (selfmonitoring)
- Use of vertices in alignment
 - **Ks, gamma conversions (off-axis tracks) as constraints**
 - Monitoring using vertex mass, consistency
- Event model, reco interaction with alignment
 - Are alignment needs satisfied?

Final Questions

• Are alignment parameter statistical errors (covariance) useful?

Procedure goal is to make them insignificant

- They are not usable in tracking (correlated between tracks)
- Could 11cm beam spread in commissioning run be enough for to measure disk Z positions?
- Could albedo particles be used as a source of offaxis tracks for alignment?
- Are low-Pt (curling) tracks useful in alignment?
 - Complementary constraint compared to straight tracks

Large scattering

Conclusions

This workshop was a success

- Lots of participation
- Communication of new ideas

QuickTime™ and a (Uncompressed) decompressor re needed to see this picture.

- **Sharing of techniques between LHC experiments**
- Comparison of existing (and former) experiments' methods against LHC experiments' plans
- With 1st data ~1 year away, LHC detector alignment preparation is in good shape
 - Alignment infrastructure incorporated into all experiments
 - (multiple) alignment techniques in place at all experiments
 - Realistic scenarios starting to be considered
 - Test beam and cosmic data being examined
- The scale of the problem is daunting
 - Time remaining must be spent wisely to insure success