

Georg Steinbrück Institut für Experimentalphysik, Universität Hamburg

On behalf of (ALICE), ATLAS, CMS, LHCb

bmb+f - Förderschwerpunkt

CMS

Großgeräte der physikalischen Grundlagenforschung

Georg Steinbrück

LHC Alignment Workshop

09/05/2006

- Impact of misalignment on tracking and vertexing
- Impact of misalignment on selected physics channel SUSY, Higgs-Physics, Standardmodel Physics (W mass), B Physics

Thanks to:

Ashfaq Ahmad, Steve Blusk, Oliver Buchmüller, Tobias Golling, Sergio Gonzales, Daniel Levin, Francisco Matorras, Jacopo Nardulli, Jochen Schieck, Maria Spiropulu, Peter Schleper, Markus Stoye, Sebastian Vieret ...who provided material and valuable input for this talk.

Georg Steinbrück

Misalignment Scenarios (CMS)

2 Scenarios:

- 1. First data, 1-6 months
- **2**. Long term, >6 months

Assumptions for alignment precision of ...

...tracker subdetectors after Laser Alignment (RMS). Tracks used only for pixel.

...tracker substructures

First Data Taking scenario:

Laser Alignment + Mechanical constraints→100 µm uncertainties

	Δx	Δy	Δz	R_z	LAS
	$[\mu m]$	$[\mu m]$	$[\mu m]$	$[\mu rad]$	available
TPB	10	10	10	10	no
TIB	105	105	500	90	yes
TOB	67	67	500	59	yes
TPE	5	5	5	5	no
TID	400	400	400	100	no
TEC	57	57	500	46	yes

	TPB	TIB	TOB	TPE	TID	TEC
RMS	$[\mu m]$					
Modules	13	200	100	2.5	105	50
Ladders/Rods/Rings/Petals	5	200	100	5	300	100

Long term: All numbers x0.1, except pixel: Assumes that pixel already aligned after first data.

... the muon system. (longterm all numbers x0.2)

	В	arrel	Endcap		
	Position	Orientation	Position	Orientation	
	[mm]	[mrad]	[mm]	[mrad]	
Muon to tracker	1	0.2	1	0.2	
Chambers	1	0.25	1	0.5	

Misalignment Scenarios (ATLAS): NEW

- 3 level misalignment at simulation level
- Alignment will be used iteratively

	Pixel	SCT	TRT	Reference frame
LEVEL 1	Whole detector	Barrel Endcaps	Barrel Endcaps	Global
LEVEL 2	Barrel layers Endcap disks	Barrel layers Endcap disks	Modules (barrel)	Global
LEVEL 3	Modules (barrel, endcap)	Modules (barrel, endcap)	-	Local

Proposed numbers for misalignment:

- few mm/ few 1/10th of mrad @L1
- 30-100µm/ 0.5-1mrad @ L2
- 30-150µm/ 1mrad @ L3

UH

Impact on Tracking (CMS)

To look at the impact of misalignment on individual physics channels, need to first look at the impact on tracking (the ingredience to physics) and vertex finding/fitting.

Note: Same pixel misalignment for short-term and long-term scenario.

Misalignment strongly impacts pT and impact parameter resolution.

Georg Steinbrück

Impact on Tracking (CMS) II

Georg Steinbrück

LHC Alignment Workshop

09/05/2006

Vertex Finding (CMS)

X- and Y-coordinates							
	$\sigma_{x,y}$	95% coverage	Bias	[µm]	$Pull_{x,y}$		
	$[\mu m]$	$[\mu m]$	Х	Y			
		Perfect tracke	er alignment				
$B_s^0 \to J/\psi\phi$	45	119	-0.5 ± 0.6	-0.6 ± 0.6	1.15		
$t\bar{t}H$	10	26	-0.0 ± 0.2	0.1 ± 0.2	1.16		
DY	13.5	46	0.2 ± 0.3	-0.5 ± 0.3	1.12		
		Short-term trac	ker alignment				
$B_s^0 \to J/\psi\phi$	51	128	-5.8 ± 0.7	12 ± 0.7	1.16		
$t\bar{t}H$	18	47	2.4 ± 0.2	16 ± 0.2	1.48		
DY	24	62	1.6 ± 0.4	16 ± 0.4	1.23		
		Long-term track	ker alignment				
$B_s^0 \to J/\psi\phi$	51	127	-10 ± 0.7	11 ± 0.7	1.16		
$t\bar{t}H$	17	47	-9.5 ± 0.4	11 ± 0.4	1.46		
DY	22	59	-8.9 ± 0.4	11 ± 0.4	1.28		

Effect on vertex finding efficiency relatively small (max. 3.5%: 99.3→95.8% for ttH)
Resolution: significant degradation by 6-8 µm in x,y,z

. Short-term, high pT: misalignment of silicon strip also plays a role

Georg Steinbrück

UHU

Vertex Fitting (CMS)

- Impact of misalignment on subsequent vertex-fitting (Kalman algorithm, least-squares)
- Only tracks matched to simulated tracks used, 4 tracks with low $pT \rightarrow vertex$

		x-coordinat	e		z-coordinate			
	Res. Std. Dev.	Res. Mean	95% Cov.	Pull	Res. Std. Dev.	Res. Mean	95% Cov.	Pull
	$[\mu m]$	$[\mu m]$	$[\mu m]$		$[\mu m]$	$[\mu m]$	$[\mu m]$	
	Perfec	ct tracker aligi	nment					
$B_s^0 \to J/\psi \phi \mathrm{SV}$	54.2	0.545	164	1.09	72.6	-0.718	445	1.08
$B_s^0 \to J/\psi \phi \mathrm{PV}$	43.8	0.596	176	1.11	54	0.633	223	1.07
$t\bar{t}H$	13.5	-0.299	106	1.45	17.2	-0.0625	116	1.43
	Short-te	erm tracker ali	gnment					
$B_s^0 \to J/\psi \phi \mathrm{SV}$	66.6	-2.5	190	1.12	84	1.82	519	1.08
$B_s^0 \to J/\psi \phi \mathrm{PV}$	49.5	-8.16	233	1.16	57.7	-2.32	282	1.07
$t\bar{t}H$	24.3	0.69	205	1.97	24.3	1.79	244	1.58
	Long-te	erm tracker ali	gnment					
$B_s^0 \to J/\psi \phi \mathrm{SV}$	63.8	-10.9	177	1.09	80.5	-3.86	502	1.07
$B_s^0 \to J/\psi \phi \mathrm{PV}$	47.9	-10.8	187	1.13	57.2	-4.86	233	1.06
$t\bar{t}H$	20.9	-11.6	116	1.83	22.3	-4.25	129	1.56

. SV of $B_{s}^{0} \rightarrow J/\psi \phi$: 12 μm degradation in all coordinates

- . Pixel-dominated; same observations as for primary vertex position
- Misalignment significantly degrades PV and SV resolutions
- . Correlated misalignment can cause biases.

Misalignment Scenarios (ATLAS): NEW: Plots

Reconstructed pt

UΗ

Correlated misalignment has significant impact on pT, both in terms of resolution and bias.

Reconstructed pt, |η|>1

Georg Steinbrück

LHC Alignment Workshop

Muons from H(300 GeV)→ZZ→eeµµ

 $Z \rightarrow \mu \mu$ Mass Resolution (CMS)

Excellent alignment required for "no effect". Short term misalignment significantly degrades momentum and mass resolution.

Georg Steinbrück

UH

LHC Alignment Workshop

09/05/2006

Georg Steinbrück

LHC Alignment Workshop

09/05/2006

Georg Steinbrück

LHC Alignment Workshop

09/05/2006

• One of the most challenging measurements at the LHC!

Uncertainties for W mass measurement in the muon channel:

Goal ~25 MeV per channel!

with 1 fb⁻¹ with **10** fb⁻¹ transformation method applied to $W \rightarrow \mu \nu$ statistics 15 40 10%2% negligible background 4 14 <0.1% 0.1%< 10momentum scale $1/p^T$ resolution 10%30<3% < 10acceptance definition 19 < 10*n*-resol. $< \sigma_n$ calorimeter E^{miss}, scale 2%38 $\leq 1\%$ < 20calorimeter E^{miss}, resolution $\mathbb{R}^{\mathbb{N}_{n}}$ <3% -1830detector alignment negligible 12 total instrumental 64 < 30PDF uncertainties < 10 ≈ 20 10< 10 Γw

> Assumes excellent tracker alignment achieved!

Georg Steinbrück

LHC Alignment Workshop

W mass (ATLAS)

• Requires understanding the momentum scale (1/pT)of the inner detector to 0.02% ("on average over limited regions") \rightarrow B-field to 0.02%!

- Measurement only possible if using the Z mass as constraint
- Then requirements on alignment of tracker modules (hard to quantify exactly, since these are residues after calibrating against the Z):
 - •1 μm in rphi, 10 μm in R, 10 μm in z in the pixels, stable over >1 day

Note: compare to ATLAS general requirement of 7µm (pixel) 12 µm (SCT)

Table 2-2 R ϕ alignment precisions (μ m) which can be obtained after one day of low luminosity running. Results are given for different types of tracks, using both complete modules and the R ϕ overlaps.

Type of Track	Pixels				so	т		
	Barrel		End-cap		Barrel		End-cap	
	Module	Overlap	Module	Overlap	Module	Overlap	Module	Overlap
$W \to \mu \nu$	1.0		1.2		2		1.3	
Single muons	0.4	2.4	0.4	4	0.7	7	0.5	5
Low-p _T tracks		0.7		0.9		1.5		1.0

ATLAS study from 1999 (ATLAS TDR)

Georg Steinbrück

LHC Alignment Workshop

Georg Steinbrück

LHC Alignment Workshop

SUSY Endpoint analysis (CMS)

$M(\mu^{+}\mu^{-})$ (GeV/c²)

• $\chi_2^0 \rightarrow \chi_1^0$ II: SFOS leptons with characteristic endpoint.

 $(m_{2}^{1}=250, sign(\mu)=+, m_{0}=60, A_{0}=0, tan(\beta)=10)$

Effects of misalignment:

UΗ

- Lower number of events selected
- Di- μ ϵ decreases by ~30% (13%) for first data (longterm)
- Di-e ε decreases by 10% (2%)
- End point still visible, shift of about 1 GeV (first data)

 $M(l_1l_2)$

$H \rightarrow 4\mu$ (Misalignment of μ syst.) ATLAS

- barrel and endcap μ-systems are aligned to few 10's of μm by optical systems
- Impact on physics only expected from relative EC to barrel misalignment

Here: x and z offset in right velo half.

Georg Steinbrück

LHCb: Rare Decays, $B_s \rightarrow \mu\mu$

Physics motivation:

- In SM Forbidden @tree level (FCNC)
- Through (helicity suppressed) penguin/ box diagram

BR (theory) 3.4x10⁻⁹ Exp limit: BR < 4.1x10⁻⁷

Rejection for 3D b-tagging algorithm for various misalignments.

		$R_0 = R_u$	R_u	R_u	R_u
		perfect	$\sigma_{R\phi} = 5\mu m$	$\sigma_{R\phi} = 10 \mu \mathrm{m}$	$\sigma_{R\phi} = 20 \mu \mathrm{m}$
		alignm.	$\sigma_z = 15 \mu \mathrm{m}$	$\sigma_z = 30 \mu \mathrm{m}$	$\sigma_z = 60 \mu \mathrm{m}$
3D	$\epsilon_b = 50\%$	262 ± 8	259 ± 8	237 ± 7	175 ± 4
	$\epsilon_b = 60\%$	81 ± 1	79 ± 1	74 ± 1	57 ± 1
		R_u/R_0	R_u/R_0	R_u/R_0	R_u/R_0
3D	$\epsilon_b = 50\%$	1.00	0.99	0.91	0.67
	$\epsilon_b = 60\%$	1.00	0.97	0.92	0.71

Note: Similar numbers for 2D algorithm. Slightly more sensitive to misalignment than 3D.

Misalignment has a significant impact on performance of b-tagging algorithm.

υH

Summary

- Tracking resolution impacted by misalignment: +50% (+200%) long (short) term (100 GeV μ, CMS)
- Consequences for physics:

RS Graviton search	Di-µ mass resolution x1.3 (x3) @3 TeV (CMS) Needs 50 % more data @ 2TeV
SUSY endpoint analysis	Di μ efficiency -30% (-13%) (CMS)
H4µ	5 mrad rotation in µ system causees 10% increase in H mass resolution (ATLAS)
W mass	1 μm alignment needed (?) (ATLAS) 12 MeV systematics@1fb ⁻¹ (CMS)
B Physics: Trigger eff	L1 eff reduced by 50% for 0.7 mrad rotation (LHCb)
B-Physics	Bs mass resolution 45→49→54 MeV (CMS) Strong impact on S/B (rare decays)
b-tagging	Rejection reduced by 9% for 10µm/30µm misalignment in rphi/z (ATLAS)

Alignment needs to be controlled to high accuracy to not compromise physics at the LHC.

Georg Steinbrück

LHC Alignment Workshop

Backup Slides

Georg Steinbrück

LHC Alignment Workshop

09/05/2006

Long Term Data Taking Scenario

Assumptions for alignment precision of **subdetectors** (RMS) after track based alignment.

υH

	Δx	Δy	Δz	R_z
	$[\mu m]$	$[\mu m]$	$[\mu m]$	$[\mu rad]$
TPB	10	10	10	10
TIB	10.5	10.5	50	9
TOB	6.7	6.7	50	5.9
TPE	5	5	5	5
TID	40	40	40	10
TEC	5.7	5.7	50	4.6

X10 improvement due to track based alignment, except pixels (same misalignment kept).

Assumptions for alignment precision Δx , Δy , Δz , and R_z of modules, rods, ladders, rings and petals.

	TPB	TIB	TOB	TPE	TID	TEC
	$[\mu m]$					
Modules	13	20	10	2.5	10.5	5
Ladders/Rods/Rings/Petals	5	20	10	5	30	10

UHU L

Fake rate (prelim)

Average fake rate in ttH events + pile-up

Track multiplicity **between 50 and 100**.

Fake rate $\approx 1.5\%$ for perfect alignment and increases to 4.5% for short-term alignment scenario

Fake rate decreasing as much as the number of rec hits used.

RS 1.5 TeV

LHC Alignment Workshop

ATLAS: H→4µ 300 GeV Higgs

Georg Steinbrück

LHC Alignment Workshop

09/05/2006

SUSY Endpoint analysis: More plots

υн

Ĥ

LHC Alignment Workshop

LHCb: Velo misalignment, module

IP resolution for module misalignment in y

Georg Steinbrück

LHC Alignment Workshop

09/05/2006

Di-Muon mass resolution for RS Graviton, $G^* \rightarrow \mu \mu$

Some examples of misalignment effects on the mass reach (in fb^{-1}):

mass	c	Ideal	With misalignment
1000	0.1	0.006	0.007 (First data)
1000	0.1	0.006	0.006 (Long term)
1500	0.1	0.050	$0.051 \ (Long \ term)$
1500	0.01	3.1	$3.6 \ (Long \ term)$
1500	0.1	0.05	0.08 (First data)
3000	0.1	6.2	6.4 (Long term)

Variations are largest for large background (c = 0.01) or First Data.

Currently, the production of samples with misalignment is being finished (during the last time performance of castor was not optimal).

Resonances in Di-Muons III

 3 TeV/c^2 .

UΗ

LHC Alignment Workshop