

SE and FCC

Established November 19, 2008

http://www-case.physics.sunysb.edu/wiki/index.php/Main_Page

The goals of CASE are:

- To train scientists and engineers with the aim of advancing the field of accelerator science:
- To develop an unique educational program that will provide broad access to research accelerators:
- To expand interdisciplinary research and education program utilizing accelerators.

Collaboration of SBU & BNL

FCC provides:

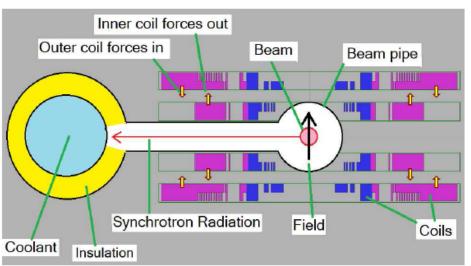
- An ultimate goal of building next generation circular ete and pp colliders;
- An opportunity for young researches to take on some of most challenging problems in accelerator science:
- The time scale of the project is well suited for students and young scientist.

CASE topics of interest for FCC

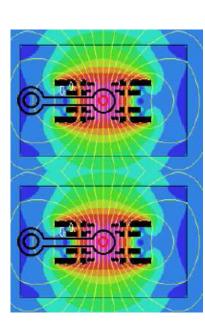
- FFAG full energy ERL for top-up injector of polarized electrons and positions
- · Advanced cooling techniques for hadrons (to avoid detector pile-up)
- Developing open plane design for synchrotron radiation absorber in Li He environment of the pp collider
- SRF system including crab cavities
- Advanced polarized electron guns
- Beam dynamics

SR & Li He environment

parameter	LHC	HL-LHC	FCC-hh	
c.m. energy [TeV]	14		100	
dipole magnet field [T]	8.33		16 (20)	
circumference [km]	36.7		100 (83)	
luminosity [10 ³⁴ cm ⁻² s ⁻¹]	1	5	5 [→20?]	
bunch spacing [ns]	25		25 (5)	
events / bunch crossing	27	135	170 (34)	
bunch population [10 ¹¹]	1.15	2.2	1 (0.2)	
norm. transverse emitt. [mm]	3.75	2.5	2.2 (0.44)	
IP beta-function [m]	0.55	0.15	1.1	Too low for
IP beam size [mm]	16.7	7.1	6.8 (3)	Be window
synchrotron rad. [W/m/aperture]	0.17	0.33	28 (44)	
critical energy [keV]	0.044		4.3 (5.5)	
total syn.rad. power [MW]	0.0072	0.0146	4.8 (5.8)	x Carno x 2 ~ 300MW AC
longitudinal damping time [h]	12.9		0.54 (0.32)	SOUTH AC



Developing alternative pp FCC SR absorber scheme



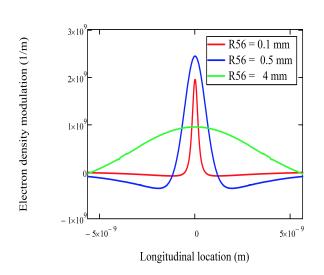
Open Mid-plane Dipoles

Magnet Division R. Gupta's design[13] for 13.5 T

- Coils shown give very good field uniformity
- The sketched idea of the dump allows cooling at 77 K and space for good thermal insulation to 1.8 K yoke
- The open plane design will be easier at lower dipole fields.

Courtesy of R. Palmer (BNL)



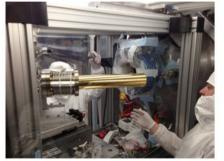

Coherent Electron Cooling

Center for Accelerator Science and Education

Micro-bunching amplifier has potential of bandwidth $\sim 10^{17}$ Hz

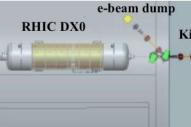
- Small β * leads to
 - Smaller DA
 - Increase angular spread $(\epsilon/\beta^*)^{1/2}$ in IR (Final Quads aperture)
- Reducing emittance, ε (while increasing collision rep-rate)
 - Increases DA/ ϵ ratio for a given β *
 - Reduces angular spread $(\varepsilon/\beta^*)^{1/2}$ in IR

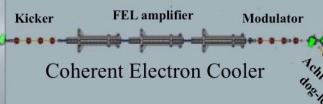
Gang Wang, 2013

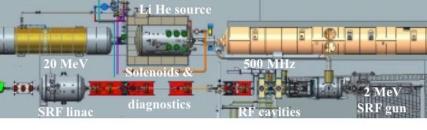


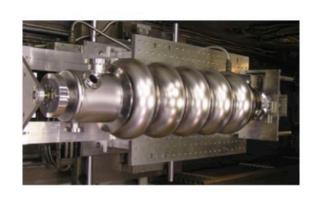
ang Wang, 2013 ST

CeC test at of RHIC









Under construction: Commissioning/test should start in 2015

A lot of excellent opportunities

L. Mihaly Chair, Department of Physics & Astronomy

Advisory Board 5 members, TBN V.N. Litvinenko **CASE Director**

Collider-Accelerator Department, BNL

T. Hemmick Deputy Director for Education and Outreach

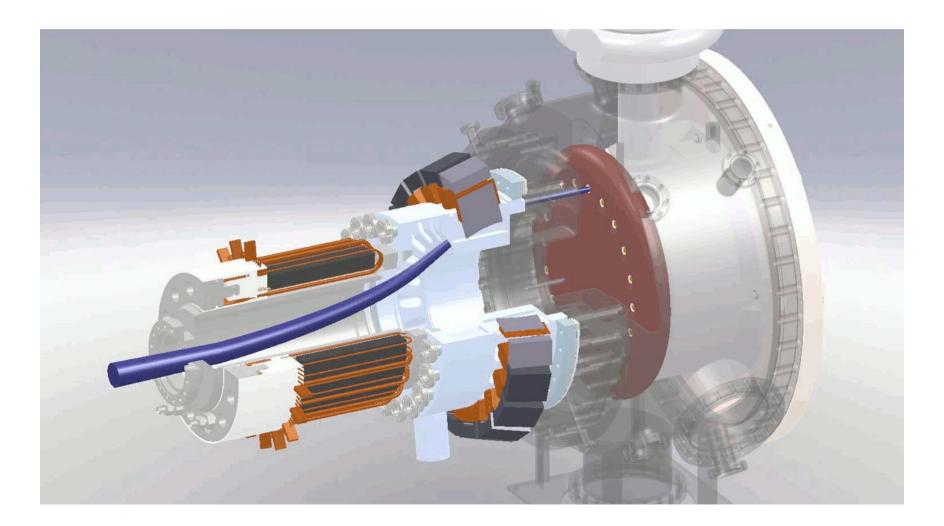
I. Ben-Zvi Deputy Director for Research

P.D. Grannis, Chair **Executive Council**

S. Belomestnykh

A.L. Deshpande

A.K. Drees



FCC meeting at CERN, Sep 10, 2014

Back-up

Current commitment:

- One joint Senior Faculty appointment, Professor of Physics
- One Assistant Research Professor (hire is in progress)
- One BNL Professor of Physics
- 8 Adjunct Professor in Physics & Astronomy
- Requested further augmentation of CASE from cluster hire initiative:
- Five faculty hires for CASE in 2012-13 in Physics and Engineering (Applied Math, EE, Computer Sci., Material Sci.) under new SBU hiring program. Three more targeted hires in 2014-17.

