

Experiments at FCC

FCC-PHYSics-COordination-group

FCC-ee

Alain Blondel John Ellis Christophe Grojean Patrick Janot

FCC-hh

Austin Ball Fabiola Gianotti Michelangelo Mangano **FCC-he** Max Klein Monica d'Onofrio

Aims of the FCC «Physics and Experiments» design study:

- -- to establish the physics capabilities of the FCC machines (- ee, hh, he) and the complementarity and coverage of the complex.
- -- scope the discovery sensitivities to a number of (new) physics scenarios by
 - -- direct observation of new particles
 - -- precision measurements of Higgs, Electroweak, Flavour etc observables
 - -- search for rare or forbidden phenomena
- -- understand the experimental environment
- -- establish the sensitivity of the physics performance of detectors to basic properties and identify which ones:
 - -- are within reach of existing technologies and R&D
 - -- would most benefit from a new, dedicated, detector R&D program
- -- define suitable layouts and requirements for infrastructure , study staging scenarios

-- identify which issues would require new theoretical calculations or additional external or internal experimental input

First phase until March 2015:

SCOPING the physics panorama and the main technical issues

Establish collaboration and reach out to interested groups

Get things started.

Possible first step : FCC-ee

First look at the physics case of TLEP, arXiv:1308.6176v3 scoped the precision measurements:

-- Model independent Higgs couplings and invisible width

- -- Z mass (0.1 MeV), W mass (0.5 MeV) top mass (~10 MeV), sin_W^{2eff} , R_{b_1} , N_v etc...
 - → powerful exploration of new physics with EW couplings up to very high masses

→ importance of luminosity and E_{beam} calibration by beam depolarization up to W pair So far: simulations with CMS detector (Higgs) -- or «just» paper studies.

Snapshot of novelties appeared in recent workshops

Higher luminosity prospects at W, Z with crab-waist

- → sensitivity to right handed (sterile) neutrinos
- → s-channel e+e- → H(125.2) production almost possible (→ monochromators?)
- → rare Higgs Z W and top decays, FCNCs etc...
- → discovery potential for very small couplings
- → precision event generators (Jadach et al)

http://cern.ch/FCC-ee

	FCC hh ee he		<mark>liggs fac</mark>	tory		e ⁺	* Z				
(constrained fit including 'exotic')		4 IPs T	LEP (2	2 IPs)		e	`H				
	$g_{ m HZZ}$	0.05%	(0.06	%)		2 10 ⁶ ZH even	ts in 5 yea	ars			
	$g_{\rm HWW}$	0.09%	(0.11	%)		«A tagged Hig	gs beam»	».			
	$g_{ m Hbb}$	0.19%	(0.23	%)	sensitive to new physics in loops						
	$g_{ m Hcc}$	0.68%	(0.84	%)	incl. invisible = (dark matter?)						
	$g_{ m Hgg}$	0.79%	(0.97	%)	A big challenge, but unique: Higgs s-channel production at √s						
	$g_{ m H au au}$	0.49%	(0.60	%)							
	$g_{{ m H}\mu\mu}$	6.2%	(7.6%	6)		e ⁺ H					
	$g_{ m H\gamma\gamma}$	1.4%	(1.7%	6)		e					
	BR _{exo}	0.16%	(0.20	%)	10 ⁴ ev	ents per year.					
→ total width <1%			Very difficult because huge background and beam energy spread $\sim 10 \text{ x} \Gamma_{\text{H}}$								
HHH (best at FCC-hh) $28\% \rightarrow$ from HZ thresh			hresh	limits	s or signal? monochromators?						
Η	<i>tt</i> (best at FCC-hh)	$13\% \rightarrow$	from tt th	resh	Aleksa	n, D'Enterria, Woij	icik				

Thickness of SM line is given by error on m_z : precise measurements of m_z and m_w

→ Energy calibration by resonnant depolarization

$$\begin{split} \mathcal{L}_{\text{eff}} &= \sum_{n} \frac{\mathcal{C}_{n} \mathrm{V}^{2}}{\Lambda^{2}} \mathcal{O}_{n} \\ \mathcal{O}_{R}^{e} &= (iH^{\dagger} \overset{\leftrightarrow}{D}_{\mu} H) (\bar{e}_{R} \gamma^{\mu} e_{R}) \\ \mathcal{O}_{LL}^{(3)l} &= (\bar{L}_{L} \sigma^{a} \gamma^{\mu} L_{L}) (\bar{L}_{L} \sigma^{a} \gamma_{\mu} L_{L}) \\ \mathcal{O}_{W} &= \frac{ig}{2} \left(H^{\dagger} \sigma^{a} \overset{\leftrightarrow}{D}^{\mu} H \right) D^{\nu} W_{\mu\nu}^{a} \\ \mathcal{O}_{B} &= \frac{ig'}{2} \left(H^{\dagger} \sigma^{a} \overset{\leftrightarrow}{D}^{\mu} H \right) \partial^{\nu} B_{\mu\mu} \\ \mathcal{O}_{T} &= \frac{1}{2} \left(H^{\dagger} \overset{\leftrightarrow}{D}_{\mu} H \right)^{2} \\ \end{split}$$
LEP constraints: $\Lambda_{\text{NP}} > 10 \text{ TeV}$

After FCC-ee: $\Lambda_{NP} > 100 \text{ TeV}$?

Sensitivity to Weakly-coupled NP

Precision measurements as tests of existence of weakly coupled new physics

Classical' precision measurements
 + flavour physics + Higgs precision measts

Higher-dimensional operators as relic of new physics ?

Possible corrections to the standard model

Γ_Z and Γ_h invisible are the most efficient way to explore SM-mediated DM at colliders

(Giudice)

extremely rare process at the Z factory; an example:

Searching for Right-Handed neutrinos in Z decays $Z \rightarrow v N$, $N \rightarrow \ell^+ W^- \frac{|U|^2 \cong m_v/m_N}{W^-}$ we thought it was impossible to reach mixing angle below 10⁻⁷ (backgrounds) but realized that for small couplings the RH neutrinos are long lived

accessible region for N decay between 100 μm and 5 m from IP -- assuming 10^{13}Z

AB, E. Graverini, N. Serra, M. Shaposhnikov

see-saw:

Machine Detector Interface (MDI) essential!

High Luminosity \rightarrow small β^* and L^* ,

detail of small angle region in detector magnetic field.

Similar to ILC /CLIC but beam needs to circulate a few 10⁵ times!

FCC-ee MDI - Interaction Region

As presented by Anton Bogomyagkov

Luminosity Monitoring

09.09

Experimental Studies: A. Blondel, P. Janot

• Discovery through precision measurements, rare, or invisible processes.

Patri NB Conveners have mission for one year to assemble group and find co-conveners

Phenomenology Studies: J. Ellis, C. Grojean

Match theory predictions to FCC-ee experimental precisions

FCC-ee workshops and meetings

FCC-ee physics workshops

https://indico.cern.ch/category/5684/ recent one: 19-21 June at CERN

-- Next :27-29 October in Paris January in Pisa

-- monthly VIDYO meetings

see https://indico.cern.ch/category/5307/

+ individual group meetings

-- link to

know what is happening (FCC-ee newsletter) register to mailing list (you will no sign anything without being asked!) <u>http://cern.ch/fcc-ee</u>

The ULTIMATE GOAL : FCC-hh

FCC-hh physics studies: emphasis on new ideas and understanding implications

of 100 TeV collisions for the exploration of BSM physics

- Exploration of EW symmetry breaking (conv. R.Contino and H.Gray)
 - High-mass WW and HH scattering
 - Precision Higgs studies, rare production and decays
 - BSM H dynamics, EW baryogenesis, etc
- Exploration of BSM phenomena (conv. F.Moortgat, P.Schwaller)
 - Discovery reach of various scenarios (SUSY, new interactions, contact interactions, ...)
 - DM searches
- Continued exploration of SM particles (temp. conv. M.Mangano)
 - Physics and precise measurements of top, W, Z
 - Flavour phenomena (quarks and charged leptons, rare/forbidden decays, ...)
- Opportunities other than pp physics:
 - Heavy Ions (conv. Dainese, Masciocchi, Wiedemann)
 - Physics with the injectors (includes test beam) (conv. B.Goddard, G.Isidori, F.Teubert)
- Theoretical tools for the study of 100 TeV collisions (conv. J.Rojo and G.Zanderighi)
 - PDFs
 - MC generators
 - Higher order QCD adn EW corrections

FCC-hh detector (convener L.Pontecorvo)

Machine-Detector Interface (conveners B.Gorini and W.Riegler)

- Detector performance
 - Rapidity coverage (tracking, jets, b, lepts, MET)
 - Calorimetry: dynamic range, granularity, for central and fwd regions
 - Muon resolution at O(10 TeV)
 - Bunch spacing optimization
- Technical systems
 - New detector technologies and R&D needs
 - Radiation, shielding
 - Calorimeters
 - Muon systems
 - Inner detectors, tracking
 - Trigger, DAQ, controls and safety
- Machine-Detector Interface (MDI)
 - L*, TAS/TAN. Optics and impact on IR design
 - Beam pipe and vacuum
 - Radiation issues
 - Physics and detector-protection instrumentation in the long straight sections

.an ambitious post-LHC accelerator project at CERN"

Parameters - choices for initial machine relatively conservative

- a few more aggressive choices where cost savings balance the risks

--> establishing a credible baseline

- potential for evolution in performance

- as design process incl R & D proceeds
- as planned machine upgrade

important parameters for detectors	baseline 2014	considered
Energy	100 TeV	
Lumi	5 x 10 ³⁴ (p-p)	up to 5 x 10^{35} (p-p)
	3 x 10 ²⁷ (Pb-Pb)	
Bunch spacing	25ns	5 ns
Pile-up	170	34 - 340
Bunch-length	8 cm	increased
% circumference filled	80 %	
1 *	46m	38m
β*	0.8m	0.3m
transverse beam size at ip	6.8µm	3µm
optimum run time	12 hrs	

FCC-hh: Physics goals --> experiment design

Explore high energy frontier (E _{LHC} x 7)

requirements: high lumi at 2 points --> 2 x GP expts similar ATLAS/CMS

detectors tolerate rate, pile-up, radiation.

central measurement --> momentum res. ~10% for 20 TeV μ

Precision Higgs measurements, VBF

requirements: tracking, momentum resolution & electromag. resolution to $\eta \sim 5$ forward extensions to GP expts with dipole field *and/or* dedicated forward experiments

also:

Standard Model studies (top, W, Z, flavour phenomena)

requirements : GP expts + dedicated smaller scale expts at lower lumi points?

Dedicated studies

requirements : eg HI & b-physics expts, similar ALICE/LHCb at lower lumi points

Intensity frontier

requirements: "smaller" scale experiments using extracted beam from injectors

FCC-hh: General Purpose expts: overview so far

Studies so far: assume today's tracking precision achieve required momentum resolution by x 7 in BL² cf LHC expts

HCAL 10 $\lambda \rightarrow 12 \lambda$ for containment

10 Tm dipole in forward direction

Low angle calorimetry by moving detector further from i/p.

Simple extrapolation eg of CMs, can produce a hard-to-maintain monster!

opening & maintenance scenario horrible and needs a lot of z $: 1^*$ (hence β^*) issues?

FCC-hh: GP expts: overview so far

Twin Solenoid: a 6 T, 12 m dia x 23 m long main solenoid + an active shielding coil

Important advantages:

- ✓ Nice Muon tracking space: area with 2 to 3 T for muon tracking in 4 layers.
- ✓ Very light: 2 coils + structures, \approx 5 kt, only \approx 4% of the option with iron yoke!
- ✓ Much smaller: system outer diameter is significantly less than with iron .

- * 1 Air core Barrel Toroid with 7 x muon bending power B_zL^2 .
- ✤ 2 End Cap Toroids to cover medium angle forward direction.
- ✤ 2 Dipoles to cover low-angle forward direction.
- Overall dimensions: 30 m diameter x 51 m length (36,000 m³).

Simulations of 2 magnetic designs (H. ten Kate et al) suggest these magnets could be built

Important now to : - decide on forward coverage of GP expts (or dedicated expts) - study what could be achieved with future sensor resolution + more modest BL^{2.}

FCC-hh : particular needs

Tracking layout and performance for: i) existing sensor capabilities ii) ambitious targets for point resolution & material

- Focus on calorimetry: granularity: channel count & consequences
 - em & hadron calorimetry interplay

Trigger/DAQ:

- develop from the bottom up (workshop needed)

Pileup mitigation:

- software (recent workshop)
- detector & machine design: time resolution,
- lumi region shaping

Experiment interface to FCC: - Low β insertion: 1* trade-offs, collimation, shielding, backgrounds, radiation studies beam pathology

- injector in FCC tunnel?
- construction/assembly/maintenance implications
- clustered or diametrically opposed collision points

FCC-hh most recent / forthcoming workshops and meetings

- BSM at 100 TeV Workshop, Febr 10-11 2014, <u>https://indico.cern.ch/event/284800/</u>
- 1st Future Hadron Collider Workshop, May 26-28 2014, <u>https://indico.cern.ch/event/304759/</u>
- Ions at the FCC, Workshop, <u>https://indico.cern.ch/event/331669/</u>
- Experiments with the FCC injectors, <u>https://indico.cern.ch/event/339178/</u>
- Periodic meetings:
 - hh Indico (incl pp, HI and injectors): <u>https://indico.cern.ch/category/5258/</u>
 - hh mailing lists:
 - <u>fcc-experiments-hadron@cern.ch</u> (general)
 - <u>fcc-ions@cern.ch</u> (heavy ions)
 - <u>fcc-experiments-physinj@cern.ch</u> (physics with injectors)

iai	rks <u>T</u> ools <u>H</u> elp					
	× New Tab		× Careers at CERN CERN. Tal	ke P × Careers at CERN	CERN. Take P 🗙	🗄 Five or N
hh ee he	https://indico	o.cern.cl	h/category/5258/	⊽ C ⁱ	8 - kitty-kats Katy	a 3 by Aleksan
	Septe	mber 2014				
		22 Sep - 23 Sep	lons at the Future Circular Collider			
	July 20)14				
		15 Jul Physics	s with injectors (first informal discussio	on)		
	May 20)14				
		26 May - 28 May	⁷ 1st Future Hadron Collider Worksho	р		
		21 May FHC E	EM calorimeters informal meeting			
	April 20	014				
		17 Apr FHC e	experiments informal meeting			
		15 Apr FHC E	M calorimeters informal meeting			
	March	2014				
		20 Mar FHC e	experiments informal meeting			
	Februa	ry 2014				
		10 Feb - 11 Feb	BSM physics opportunities at 100 Te	V		
		06 Feb FHC e	experiments informal meeting			
	Januar	y 2014				
		29 Jan Ions at	t the Future Hadron Collider			
		27 Jan FHC ex	experiments informal meeting			
	Decer	ber 2013	Aperatoria mornal meeting			
			Highlight All Match Case			
b	DOOK	\sim \sim	Highlight <u>A</u> ll Match Case			

FCC-he: Deep Inelastic Scattering [eh \rightarrow e'X]

Deep inelastic ep and eA scattering complements pp and ee

From Hoftstatter to FCC-he: 100 years of eh scattering

CERN is the only place where new DIS experiments at the energy frontier can be planned extending beyond HERA

(LHeC: ongoing study (CDR 2012) for ERL e beam + LHC)

FCC: options for 1 ep collision point : ERL (of LHeC) on FCC-hh or FCC-hh on FCC-ee \rightarrow FCC-he

FCC-he option Coordinated by Oliver Brüning and Max Klein

HERA-LHeC-FCC-eh: finest microscopes with resolution varying like $1/VQ^2$

FCC-he Detector (B) – 0.1

Tentative design of detector for ep and eA physics with the FCC-he: 18m (I) x 9m (r) High resolution of hadron energy and large forward acceptance for Higgs physics High precision and full polar angle coverage for QCD, electroweak and BSM Task: optimisation of design, full simulation, design of the interaction region Goal: synchronous ep and pp operation from day 1 of p beam

P.Kostka, A.Pollini, M.Klein, H TenKate et al

Physics and Organisation of the FCC-he Study

Higgs - Uta Klein, Masahiro Khuze - selfcoupling, 2nd and 3rd generation, CP

PDFs - Voica Radescu, Frank Olness - new evolution, full unfolding, high x

BSM – Monica D'Onofrio, Georges Azuelos – SUSY, Leptoquarks, CI, substructure

Top - Olaf Behnke, Christian Schwanenberger - 6FVS, top PDF, anomalous coupling

Low x - Paul Newman, Anna Stasto – Gluon saturation, breakdown of DGLAP

Heavy Ions – Nestor Armesto with low x – Nuclear Structure, QGP

Detector - Peter Kostka, Alessandro Polini - Design and Simulation, IR

Software – Paul Laycock and Peter Kostka – Simulation of ep/eA Detector

In close collaboration with eh coordination group and machine physicists

Dolce in fine

At this point everybody needs SOFTWARE

- → turn paper studies into real simulations including acceptance, resolution, PID, backgrounds & pile-up
- \rightarrow study impact of detector properties on physics sensitivities
- \rightarrow understand challenges and need for dedicated R&D.

FCC software for experimental studies: Goals

- Software effort common to FCC-ee, FCC-hh and FCC-eh
 - Conveners: Fabiola Gianotti, Patrick Janot until 5 September
 - Now taken over by the experts: Benedikt Hegner (CERN) and Colin Bernet (IN2P3)
- Goal is to find good solutions for

 Core framework 	Gaudi
 Simulation 	Geant4, DELPHES, others
 Detector description 	DD4HEP, DDG4
 Reconstruction 	?
 Data Model 	Inspired by LCIO
– Analysis	C++ and python

- Without starting a software effort from scratch
 - i.e., pick up "existing" solutions / projects and choose pragmatically/wisely

a A lot of synergies with

- PH-SFT, towards a turn-key universal framework
- ILC/CLIC (e.g., detector description, event data model)
- LHC (Gaudi & GaudiHive adapted from ATLAS, analysis framework adapted from CMS)
- AIDA2 (within which some of these efforts are carried out)

FCC software for experimental studies: Status

After three months of work

- Punctuated with 13 informal meetings (<u>https://indico.cern.ch/category/5666/</u>)
 - Core framework infrastructure in active use
 - First test setup for detector description in place (with bugs)
 - Modest example workflow: histogram generated particles. We need much more!
 - Simulation: DELPHES being integrated, but GEANT4 not yet integrated
 - Data model needs to be worked on and integrated
 - Nothing exists on reconstruction
 - Analysis framework needs to be integrated

- Less than one FTE for the time being
 - Three students will start in Sept/Oct 2014

Different levels of detail = Doing short cuts in the full workflow

Parameterized

simulation

FCC software for experimental studies: Plans

More/taster progress require more participation from

- CERN
 - Applied fellows, associates, invited scientists
- External institutes

h ee he

- A number of projects / work-packages will be proposed momentarily
- → Join the user training session
- CLIC / ILC software experts
 - Towards the use / optimization of common and universal software
 - (Geometry, data model, ...)
- FCC detector groups (ee, hh, eh)
 - Towards the parameterization / simulation of well-defined detectors
- FCC experimental study groups (ee, hh, eh)
 - Generators to be interfaced
 - Evaluation of simulation performance
 - Benchmark analyses and analysis tools
- For more information / organization / participation
 - Contact <u>Colin.Bernet@cern.ch</u> and <u>Benedikt.Hegner@cern.ch</u>
 - Subscribe to fcc-experiments-sw-dev@cern.ch

Complementarity

Proposed physics topics to be used in the study of synergy/complementarity among experiments at FCC-hh/ee/eh

Subject		ee	hh	he
Higgs Physics	precision studies higher dimension operators composite Higgs rare and exotic decays multiple Higgs production extra Higgs bosons			
Interface with Cosmology	Dark matter baryogenesis right-handed/(almost) sterile neutrinos			
Electroweak Sym. Breaking	WW scattering supersymmetry extra dimensions composite models			
Flavour Changing	rare H,Z,W,top decays lepton flavor violation			
Extensions of the SM	extra vector-like fermions SU(2) _R models leptoquarks			
QCD	Perturbation theory, structure functions Modelling final states			
EW/SM precision issues	precision measts $(m_z, m_w, m_t, \alpha, \alpha_s(m_z), \sin^2\theta_w, R_b$ higher-order EW corrections W,Z triple and quadruple couplings top (anomalous) couplings charm/bottom flavor studies			

The combination of the FCC machines offers outstanding discovery potential by exploration of new domains of

- -- precision
- and
- -- direct search, both at high energy and at very small couplings

Extra slides

FCC Physics Coordination (Physco)

Meeting / activity	Present goals (as of April 2014)	who is present	Frequency
Physics Coordination Meeting (FCC-Physco) (Chair: A. Blondel until April 2015 Secretary: Mike Koratzinos)	 Ensure that all physics studies progress as one consistent endeavor Define and align scope and milestones of physics studies Propose physics topics to be used in the study of synergy/complementarity among experiments at FCC-hh/ee/eh Track progress of individual physics study activities Monitor/coordinate/promote talks on FCC physics at conferences and workshops Identify technical and organizational questions which require further coordination Software platform theoretical calculations conference presentations repository of talks and papers, experimental R&D and infrastructures running scenarios and schedule general study management 	FCC Study leader and deputy; Hadron physics and experiments study leaders; Lepton physics and experiments study leaders; e-p physics and experiments study leader; others invited as required. 	1 / month or as needed (Thursdays 12:00-13:30) 5 February 20 March 10 April 8 May

Interaction Regions for ep with Synchronous pp Operation

01

Likely one IR. ⁻⁰ Matching e and p beams ⁻⁰ Limit synchrotron radiation ⁻ Design of inner magnets Beam-beam effects

collider parameters	FCC ERL	FCC-ee ring		protons	
species	e⁻ (e⁺?)	e [±]	e [±]	р	
beam energy [GeV]	60	60	120	50000	
bunches / beam	-	10600	1360	10600	
bunch intensity [10 ¹¹]	0.05	0.94	0.46	1.0	
beam current [mA]	25.6	480	30	500	
rms bunch length [cm]	0.02	0.15	0.12	8	
rms emittance [nm]	0.17	1.9 (<i>x</i>)	0.94 (<i>x</i>)	0.04 [0.02 <i>y</i>]	
$\beta_{x,y}$ *[mm]	94	8, 4	17, 8.5	400 [200 <i>y</i>]	
σ _{x,y} * [μm]	4.0	4.0, 2.0		equal	
beam-b. parameter ξ	(<i>D</i> =2)	0.13	0.13	0.022 (0.0002)	
hourglass reduction	0.92 (<i>H_D</i> =1.35)	~0.21	~0.39	F.Zimmermann	
CM energy [TeV]	3.5	3.5	4.9	ICHEF 14, Julie	
luminosity[10 ³⁴ cm ⁻² s ⁻¹]	1.0	6.2	0.7	PRELIMINARY L is 1000*HERA	