Accelerator Status

 Frank Zimmermann *for the FCC team* Preparatory Meeting for the International Collaboration Board CERN, 8 September 2014

Particular thanks to Michael Benedikt, Bernhard Holzer, Giovanni Iadarola, Max Klein, Mike Koratzinos, Kazuhito Ohmi, Daniel Schulte, Rogelio Tomas, Jörg Wenninger…

FCC study scope

- Conceptual Design Report (CDR) and cost review for the next European Strategy Update in 2018:
- *pp*-collider (*FCC-hh*): defining infrastructure requirements
	- **~16 T 100 TeV** *pp* **in 100 km**
	- \sim 20 T \rightarrow 100 TeV *pp* in 80 km
- **□** e ⁺ e ⁻ collider (*FCC-ee*) as potential intermediate step
- *p-e* collider (*FCC-he*) option

requires a 80-100 km M. Benedikt infrastructure in Geneva area

- □ highest possible *pp* luminosity at 100 TeV
	- present baseline *L*=5x10³⁴ cm-2s -1 (as for HL-LHC)
	- \triangleright higher luminosity appears possible
		- with implications for pile up, bunch spacing, shielding, cost, …
- **□** also heavy-ion collisions & ion-proton collisions
- □ 2-4 experiments (like LHC, two special purpose detectors)
- □ proton polarization? (demonstrated at RHIC)

 $longer$ cell \rightarrow good dipole filling factor

shorter cells \rightarrow more stable beam (smaller beta-function) scaling from LHC

- "natural" scaling 107 m \rightarrow ~300 m \qquad β \propto L_{cell} \propto \sqrt{E}
- for FCC magnet technology \rightarrow 200 m dipole length should be similar to LHC (transport for installation) $\beta \propto L_{cell} \propto \sqrt{C}$

D. Schulte, B. Holzer, R. Alemany

example arc optics

aperture in σ larger than for LHC

 $L_{cell} = 208.14 \text{ m}$ $N_{\text{dip}}/cell = 12$ $N_{\text{cell}}/arc = 34$ $N_{\text{dip}} = 5016$ $L_{\text{dip}} = 14.2 \text{ m}$ L_{quad} = 5.17 m

dipole filling factor in arc: $\eta = 82\%$

B. Holzer, R. Alemany; related work at CEA Saclay

ring optics for alternative layouts

*=1.1→0.25 m: beam current & SR power lower by factor ~2 at constant average luminosity

R. Tomas, R. Martin, E. Todesco et al.

pp IR – radiation from debris

machine protection

energy per proton beam *LHC*: 0.4 GJ → *FCC-hh*: 8 GJ (20x more !)

- kinetic energy of Airbus A380 at 720 km/h
- can melt 12 tons of copper, or drill a 300-m long hole

Collimation

- LHC -type solution is baseline, but other approaches should be investigated:
- hollow *e* beam as collimator
- crystals to extract particles
- renewable collimators
- D. Schulte, S. Redaelli

luminosity evolution w rad damping

resistive-wall instability

need <50-turn feedback

- or increase beam screen aperture
- or decrease beam current

 TMCI is less important

> N. Mounet, G. Rumolo

multi-bunch effect at 50 K & injection; only resistive wall (infinite copper layer)

thickness of copper coating

longitudinal stability

loss of Landau damping filling factor in momentum

E. Shaposhnikova

electron cloud

schematic of e- build up inside beam pipe with SR photons, emitted photoelectrons and secondary electrons. Horizontal axis is time. Electrons are accelerated in the field of passing bunches [Courtesy F. Ruggiero]

FCC-hh critical photon energy = 4.3 keV, similar to 2-3 GeV light sources, 100 x LHC

electron-cloud effects: beam instabilities, emittance growth, heat load, …

e-cloud: δ_{max} threshold at injection

heat load first increases with *R* and then decreases for large *R*

heat load decreases with growing *R*, but oscillates

 $SEY = 1.00$

 $SEY = 1.05$

 $SEY = 1.10$

 $SEY = 1.15$

 $SFY=1.20$

 $SEY = 1.25$

 $SEY = 1.30$

 $SEY = 1.35$

 $SEY = 1.40$

 $SEY = 1.45$

 $SEY = 1.50$

 $SEY = 1.55$

 $SEY = 1.60$

 $SEY = 1.65$

 $SEY = 1.70$

 $SEY = 1.75$

 $SEY = 1.80$

 $SEY = 1.85$

 $SEY = 1.90$

 \leftarrow SEY=1.95

preliminary parameters

M. Schaumann, J. Jowett

luminosity evolution for *Pb-Pb* & *p-Pb*

physics requirements for *FCC-ee*

- □ highest possible luminosity for a wide physics program ranging from the Z pole to the $t\bar{t}$ production threshold
	- *beam energy range from 45 GeV to 175 GeV*
- **□** main physics programs / energies:
	- *⊁* Z (45.5 GeV): Z pole, 'TeraZ' and high precision M_Z & Γ _Z,
	- *W (80 GeV): W pair production threshold,*
	- *H (120 GeV): ZH production (maximum rate of H's),*
	- \triangleright *t* (175 GeV): $t\bar{t}$ threshold
- some polarization up to ≥80 GeV for beam energy calibration
- □ optimized for operation at 120 GeV?!

layout & optics at 120 & 175 GeV

-0.02 0

0.06

50.

 0 2 4 6 8 10 12 s in km

10.

 0.0

10.

20.

 $s(m)$

 $30₁$

 $40.$

B. Harer, B. Holzer

optics 175 & 120 → 80 & 45.5 GeV

Synchrotron radiation power

The maximum synchrotron radiation (SR) power *PSR* is set to **50 MW per beam** – design choice \Leftrightarrow power dissipation.

defines the maximum beam current at each energy.

Note that a margin of a few % is required for losses in straight sections.

shielding 100 MW SR at 175 GeV

FLUKA geometry layout for half FODO cell, dipole details, preliminary absorber design incl. 5 cm external *Pb* shield

total power deposition ¹² W/0 & w absorbers deposited power [kW] 8 6. $\overline{2}$ O_{16} **186 SIS 186 A**so_s **PUR R NOO A ABO E** tunnel IC pipe $A_{1/2}$ elements 120 shield no shield WGy/y] assuming 10mA along 1e7 s/y 100 longit. peak-dose $80[°]$ profile w/o & w 60 $40[°]$ absorbers $20[°]$ TOOLAH ILAH ¹ -600 400 400 600

 $[cm]$

L. Lari, F. Cerutti, A. Ferrari, A. Mereghetti

FCC-ee IR design #1

FCC-ee IR design #2

A. Bogomyagkov, E. Levichev, P. Piminov

beam-beam parameter

 $\Delta y'$ (μrad)

20

 -20

- \Box beam-beam parameter ξ measures strength of field sensed by the particles in a collision
- **D** beam-beam parameter limits are empirically scaled from LEP data (also 4 IPs)

significantly with Crab-Waist schemes !

J. Wenninger, R. Assmann, S. White, K. Ohmi, D. Shatilov, et al.

 hard photon emission at the IPs, '*Beamstrahlung*', can become lifetime / performance limit for large bunch populations (*N*), small hor. beam size ($\sigma_{\scriptscriptstyle \! x}$) & short bunches ($\sigma_{\!\scriptscriptstyle S}$)

$$
\tau_{bs} \propto \frac{\rho^{3/2} \sqrt{\eta}}{\sigma_s} \exp(A \eta \rho) \qquad \frac{1}{\rho} \approx \frac{N r_e}{\gamma \sigma_x \sigma_s} \qquad \frac{e}{\phi} \ll 1
$$

 : mean bending radius at the IP (in the field of the opposing bunch)

lifetime expression by V. Telnov, modified version by A. Bogomyagkov et al

n: ring energy acceptance

 \Box to ensure an acceptable lifetime, $\rho \times \eta$ must be sufficiently large

- \circ *flat beams (large* $\sigma_{\!\sf x}$ *) !*
- o *bunch length !*
- large momentum acceptance of the lattice: **1.5 2% required**.
	- LEP: $<$ 1% acceptance, SuperKEKB \sim 1-1.5%.

J. Wenninger, et al

beam-beam limits: 2 regimes

 $\varepsilon_{\rm y}$ = 2 pm, β_{y} * = 1 mm

M. Koratzinos, A. Bogomyagkov, E. Levichev, D. Shatilov, K. Yokoya, V. Telnov, K. Oide, …

beamstrahlung lifetime

FCC-ee, $E_{\text{beam}} = 175 \text{ GeV}$ (most critical case)

M. Koratzinos, K. Ohmi, V. Telnov, A. Bogomyagkov, E. Levichev, D. Shatilov

momentum acceptance [%]

smallest possible β^* desired; target $\beta^*_{y} = \underline{1 \text{ mm}}$; so small a value of β^* requires local chromaticity correction

o *design inspired by linear collider IR;*

- \circ *additional complexity that beam does not pass the IR only once* \rightarrow *effects of optical aberrations critical*
- o *bending magnets close to the IP SR fan !*
- distance between IP and front-face of first quadrupole currently set to **L* ≥ 2 m** (SuperKEKB ~1 m)
	- o *detector acceptance, luminosity measurement,… .*

combination of very small β_{y}^* and required large energy acceptance is challenge for optics design !

J. Wenninger, R. Tomas,…

β^* evolution

0.3 mm

SuperKEKB will be an *FCC-ee* demonstrator for certain optics aspects !

luminosity $[10^{34}$ cm⁻²s⁻¹]

A. Bogomyagkov, E. Levichev, D. Shatilov

beam-beam performance checks

K. Ohmi, A. Bogomyagkov, E. Levichev, P. Piminov

SuperKEKB = *FCC-ee* demonstrator

beam commissioning will start in 2015

top up injection at high current β_y^* =300 μ m (FCC-ee: 1 mm) **lifetime** 5 min (FCC-ee: ≥20 min) e**y /**e**^x** *=*0.25% (similar to FCC-ee) **off momentum acceptance** (±1.5%, similar to FCC-ee) *e* **⁺ production rate** (2.5x10¹²/s, FCC-ee: <1.5x10¹²/s (*Z* cr.waist)

SuperKEKB goes beyond *FCC-ee*, testing all concepts

A. Blondel

FCC-ee injection

beside the collider ring(s), a booster of the same size (same tunnel) must provide beams for top-up injection

- \circ same size of RF system, but low power (\sim MW)
- \circ top up frequency \sim 0.1 Hz
- o booster injection energy ~20 GeV
- o bypass around the experiments

injector complex for e⁺ and e- beams of 10-20 GeV

 \circ Super-KEKB injector \sim almost suitable

polarization

two primary interests:

accurate energy calibration using resonant depolarization \Rightarrow measurement of M_z, Γ _z, M_w

 \circ *nice feature of circular machines,* δM_Z *,* δT_Z *~ 0.1 MeV*

physics with longitudinally polarized beams

o *transverse polarization must be rotated in the longitudinal plane using spin rotators (see e.g. HERA)*

LEP

90

80

70

Energy [GeV]

75 **loss of polarization due to** Linear *scaling from LEP* **growing energy spread** Polarization [%] 50 $\pmb{\sigma}_E \propto \pmb{E}^{\pmb{2}}/\sqrt{\pmb{\rho}}$ *observations : polarization expected up* Higher 25 *to the WW threshold ! integer spin resonances are* Ω *spaced by 440 MeV:*

energy spread should remain below ~ 60 MeV

A. Blondel, S. Mane, U. Wienands, J. Wenninger, et al.

50

60

40

100

transverse polarization build-up (Sokolov-Ternov) is slow at *FCC-ee* (large bending radius ρ)

build-up is ~40 times slower than at LEP

wigglers may lower $\tau_{\sf p}$ to ~12 h, limited by $\sigma_F \leq 60$ MeV and power

due to power loss the wigglers can only be used to pre-polarize some bunches (before main injection)

Iongitudinal polarization: levels of ≥ 40% required on both beams;

■ longitudinal polarization: levels of ≥ 40% required on both beams; excellent resonant compensation needed

expected to be difficult, requires spin rotators or snakes, most likely only possible at lower intensity and luminosity

SLIM, PETROS, SITF simulations being prepared **E. Gianfelice**

A. Blondel, U. Wienands, J. Jowett, R. Rossmanith, J.Wenninger

□ e^{\pm} -proton & e^{\pm} - ion collisions at high energy + high luminosity *e* ± -b*eam energy range from 50 GeV to ≥120 GeV*

□ main physics energies (tentative):

- *60 GeV e* ± *high luminosity, polarization*
- *120 GeV e* [±] *high energy, still decent luminosity*

□ ring-ring (based on *FCC-ee*) and ERL-ring options **► ERL limited to about 60 GeV**

eh IR with parallel *pp* operation

Still work in progress: may not need half quad if $L^*(e) < L^*(p)$

Tentative: ϵ_{p} =2µm, β *=20cm $\rightarrow \sigma_{p}$ =3µm $\approx \sigma_{e}$ matched! ϵ_{e} =5µm ..

60 GeV * 50 TeV

R. Tomas, M. Klein

he beam-beam performance

he luminosity optimization

- , 50 TeV *p*

FCC-hh Work Units

- 1.2.1 **Overall design parameters**
- 1.2.1.1 Baseline layout
- 1.2.1.2 Baseline parameters
- 1.2.1.3 Baseline parameters for HE-LHC
- 1.2.1.4 Injector complex requirements and constraints
- 1.2.1.5 Physics requirements
- 1.2.1.6 Staging scenarios
- 1.2.2 **Functional machine design**
- 1.2.2.1 Single beam collective effects
- 1.2.2.2 Collimation and absorber concepts
- 1.2.2.3 Injection and extraction concepts and designs
- 1.2.2.4 Ion beam operation design considerations
- 1.2.2.5 Interaction region and final focus design
- 1.2.2.6 Lattice design and integration and single particle dynamics
- 1.2.2.7 Machine detector interface
- 1.2.2.8 Machine protection, magnet protection, QPS, BLM concepts
- 1.2.2.9 Radiation maps and effects
- 1.2.2.10 HE-LHC performance needs and conceptual design
- 1.2.2.11 Beam-beam collective effects and dynamic aperture
- 1.2.2.12 RF and feedback conceptual design
- 1.2.3 **Technical systems**

…

M. Benedikt, J. Gutleber, D. Schulte

FCC-ee Work Units

- 1.4.1 **Overall design parameters**
- 1.4.1.1 Baseline layout
- 1.4.1.2 Baseline parameters
- 1.4.1.3 Injector complex requirements and constraints
- 1.4.1.4 Physics requirements
- 1.4.1.5 Staging scenarios
- 1.4.2 **Functional machine design**
- 1.4.2.1 Beam-beam effects
- 1.4.2.2 Collimation and absorber concepts
- 1.4.2.3 Injection and extraction concepts and designs
- 1.4.2.4 Interaction region and final focus design
- 1.4.2.5 Booster ring conceptual design and integration
- 1.4.2.6 Lattice design and single particle dynamics
- 1.4.2.7 Polarization and energy calibration
- 1.4.2.8 Machine detector interface
- 1.4.2.9 Machine protection concepts
- 1.4.2.10 Radiation effects
- 1.4.2.11 Impedance and single-beam collective effects
- 1.3.3 **Technical systems**

M. Benedikt, J. Gutleber, J. Wenninger

conclusions

- real design work has started in (almost) all work units
- great progress since FCC kick-off in February
- wide study scope, many interesting questions
- emphasis shifting to optimization and choice between alternatives (\rightarrow FCC annual WS in March '15)
- many technologies also need work (magnets, SRF, collimators, vacuum system,…)
- witnessing a lot of enthusiasm and excitement
- colleagues contributing from around the world (EU, Switzerland, BINP, KEK, ESS, SLAC, MSU, …)
- more partners & contributions welcome!

surely great times ahead!

