

Status of Magnet R&D for the FCC

Presented by Luca.Bottura@cern.ch

Preparation Meeting for the FCC International Collaboration Board September 9th, 2014

The FCC playground

- LHC 27 km, 8.33 T 14 TeV (c.o.m.) 1300 tons NbTi
- HE-LHC 27 km, **20 T** 33 TeV (c.o.m.) 3000 tons LTS 700 tons HTS
- FCC-hh 80 km, **20 T** 100 TeV (c.o.m.) 9000 tons LTS 2000 tons HTS
- FCC-hh 100 km, **16 T** 100 TeV (c.o.m.) 6000 tons Nb₃Sn 3000 tons Nb-Ti

FCC magnets - LTS option

		B/G	B _{peak}	dB/dt	Bore	Length
		(T) / (T/m)	(T)	(mT/s)	(mm)	(units x m)
FCC	MB	16	16.8	16	40	4578 x 14.3
	MQ	375	10	10	40	762 x 6.6
	QX	200	12.5	12.5	90	Optics ?
	D1	12	13	13	60	4x2 x 12
	D2	10	10.5	10.5	60	4x3 x 10
Booster in the FCC	MB	1.1	2	2	50	4578 x 14.3
injector in the LHC	MB	5	5.25	20	50	1232 x 14.3
injector in the SPS	MB	12	12.5	100	50	892 x 4.7

FCC magnets – HTS option

		B/G	B _{peak}	dB/dt	Bore	Length
		(I)/(I/m)		(mT/s)	(mm)	(units x m)
FCC	MB	20	21	16	40	3662 x 14.3
	MQ	375	10	10	40	610 x 6.6
	QX	200	12.5	12.5	90	Optics ?
	D1	12	13	13	60	4x2 x 12
	D2	10	10.5	10.5	60	4x3 x 10
Booster in the FCC	MB	1.5	2.2	2.2	50	3662 x 14.3
injector in the LHC	MB	5	5.25	20	50	1232 x 14.3
injector in the SPS	MB	12	12.5	100	50	892 x 4.7

Three directions for R&D

- 16 T dipole for the FCC-hh main arc
 - Challenges: field level with a 40...50 mm bore, field quality, protection, cost
 - Proposal: develop A15-based 16 T dipole technology, with sufficient aperture and accelerator features. Build short model(s) as a worldwide effort
 - 20 T dipole for the FCC-hh main arc and special regions
 - Challenges: feasibility, field level, protection, field quality
 - Proposal: demonstrate HTS/LTS 20 T dipole technology in two steps:
 - a field record attempt at breaking the 20 T barrier (no aperture)
 - a 5 T insert, with sufficient aperture (40 mm) and accelerator features
 - 1 T ... 2 T injectors and booster magnets
 - Challenges: power consumption, compatibility with other collider options (e.g. FCC-ee)
 - Proposal: demonstrate low consumption, compact (HTS based ?) dipole technology

High awareness of potential and impact in other domains of magnet technology and applied superconductivity

FCC Magnet Design and R&D

HH SC magnets

LTS magnets

- Arc dipole designs
- Arc quadrupole designs
- IR magnets design
- A15 material R&D (Nb₃Sn, Nb₃Al)
- 16 T dipole model(s) construction and test

H2020

 Conceptual and engineering design of 16 T dipole

HTS magnets

- Arc dipole designs as hybrid LTS/HTS
- IR and collimation region
 magnet designs
- HTS material R&D
- 20 T (no bore) insert R&D and test
- 5 T (40 mm) standalone and insert R&D and test

EuCARD

• 6 T insert

EuCARD2

• 5 T dipole

Injectors and booster

- Compact, low consumption resistive magnets
- Redundancy/fast connectivity, radiation hardness
- Fast cycled 5 T magnets (LHC tunnel)
- Fast cycled 12 T magnets (SPS tunnel)
- Fast cycled 1.5 T magnets for an FCC-hh booster

H2020-FET ?

 2 T HTS FCM with high energy efficiency

16 T design considerations

Twin aperture 16 T design proposal with 150 mm inter-aperture distance Sabbi, 2014

 $J_{C}(16 \text{ T}, 4.2 \text{ K}) > 1500 \text{ A/mm}^{2}$

Bore field (T)

30

From ITER- to HEP-class Nb₃Sn

FCC Nb₃Sn performance targets

HL-LHC Nb₃Sn wires

	Sub-element size (µm)						
	$\Phi_{ m wire}$ (mm)	RRP® 108/127	RRP® 132/169	RRP® 192/217	PIT 114	PIT 192	
FReSCa2	1	-	58	-	-	48	
Hi-Lumi QXF	0.85	-	48	-	-	41	
11 T	0.7	46	41	32	44	-	

S4/6108/127132/169198/217114192Image: Comparison of the state of the

Smaller sub-element size

Magnetization of Nb₃Sn

CERN

Measurements by D. Richter

The difficulty of fine filaments

Limit at approximately 40 µm for both architectures

Challenges and opportunities

HL-LHC

- Demonstrate Nb₃Sn technology for use in the LHC – 2016
- Prepare HL-LHC in LS2 2018
- Install HL-LHC in LS3 2023
- FCC and linear collider technologies
 - CDR for European Strategy Review – 2017
- Prototyping of FCC magnets – 2018-2025
 - Production of FCC magnets – 2025-2035

- Secure robust HEP Nb₃Sn for the first large scale use in HEP
- Squeeze out of Nb_3Sn its full potential in terms of J_C and Deff
- Improve quality, affordable production
 - How?
 - A coordinated, worldwide R&D to foster progress and spread technology
 - Material research (on LTS !)
 - Other industrial actors

•

What is happening in the meantime ?

SMC/RMC/FReSCa2 status

Technology development

- SMC-3b (PIT 1.25 mm, 14 strands cable): completed and tested **12.6 T**
 - SMC-5 wound, test planned in 2014
 - SMC-4 planned

SMC-11T-1 (RRP 0.7 mm, 40 strands cable rectangular): completed and tested – **13.5 T** SMC-11T-2 (same as SMC-11T-1, with mica): completed and tested – 12.2 T

RMC (PIT 1 mm, 40 strands cable for FRESCA2): heat treated, in impregnation, test in September 2014

FReSCa2 – 13 T operational field, \approx 15 T ultimate field (mechanical limit): two Cu pancakes wound at CEA-Saclay, first pancake heat treated and instrumented, second pancake heat treated and in instrumentation

EuCARD, CERN, CEA, RAL

IR quadrupoles Coil X-section

90 mm

200 T/m

- Aperture Ø90 mm
- 36 turns (IL 16, OL 20)
- No grading
 - I-L insulation 0.7 mm
 - Mid-plane insul. 0.2 mm
 - FQ_{r30mm}(200 T/m):
 - b6 = 0.8 units
 - b10 = 0.18 unit
- $L_{diff} = 4.26 \text{ mH/m}$
- $E_{mag} = 401 \text{ kJ/m}$

Field errors with iron saturation at 200 T/m

wp(13.4 kA, 4.3K) = 83 % Comfortable operating margin

IR quadrupoles

200 T/m 90 mm

Novel (horizontal) collaring concept that could be more easily extrapolated to large series production

HTS for 20 T

Sample of US **BSCCO-2212** cable (LBNL)

BSCCO-2212, **CERN** provides precursor powders, US **BSCCo** program produces wire and cable

Magnetic Field [T]

EUCARD²

REBCO option (Roebel)

EuCARD2 program, targeting a 5 T, 40 mm aperture demonstrator, in collaboration with EU laboratories and industry

Former Design

US-BSCCo program, testing alternative materials and coil configurations (CCT, LBNL)

J. van Nugteren and G. Kirby (CERN)

LBNL, ASC-NHMFL, FNAL, BNL

HEB magnets in a 100 km tunnel

- HTS, transmission line, iron dominated, superferric, 2-in-1 dipole
- Tentative parameters:
- vertical full gap 50 mm
- good field region ±20 mm
- overall diameter of "super-cable", including cryostat, 100 mm

50 kA-turns for 1.1 T (3.4 TeV)

At low current, the apertures could be used in bipolar operation as a lepton booster

Study by A. Milanese, IPAC 2014

www.cern.ch