CEA/IRFU (Saclay) and FCC Main areas of interest within FCC

IRFU: Institute of Research into the Fundamental laws of Universe at CEA See also F. Millet presentation on proposed

contributions for cryogenic system from CEA-Grenoble

E LA RECHERCHE À L'INDUSTRI

cea

R. Aleksan ICB Sept. 10, 2014

FCC

PS

Organization

SPS

LHC

IRFU's area of interest

IRFU and FCC

E LA RECHERCHE À L'INDUSTRIE

Both for FCC-hh and FCC-ee, the areas of interest cover

In the following, the proposed contributions with quantitative commitment efforts are indicated in green, Interest without quantitative commitment efforts is indicated in magenta

Note: other topics (not mentioned here) are under discussion in the group

Involvement of IRFU in FCC			
FCC-hh Physics	Studies	FCC-ee	cea
Search of new physics Precision measurements			
The physicists are mainly interested to study the mass reach at FCC-hh for BSM particles : SUSY and heavy resonances in di-lepton, tt or multi-boson final states.	Measured parameter	Method	Energy (GeV)
	Γ _H	σ_{HZ} $\sigma_{HZ} \times Br(H \rightarrow ZZ)$	240
	$\Gamma_{\mathrm{H} ightarrow inv}$	$\sigma_{HZ} \times Br(H \rightarrow inv)$	240
	g _{Hcc}	$\sigma_{HZ} \times Br(H \rightarrow c\overline{c})$	240
	Ν _ν	$\sigma_{HZ} \times Br(Z \to inv)$ $\sigma_{ZZ} \times Br(Z \to inv)$ $\sigma_{\gamma Z} \times Br(Z \to inv)$	240
	N_{ν}	$\sigma_{\gamma Z} \times \operatorname{Br}(\mathbf{Z} \to \mathbf{inv})$	126
	$Br(H \rightarrow ee)$	$\sigma_{e^+e^- o H}$	126
	$\mathbf{m}_{\mathrm{t}}, \Gamma_{\mathrm{t}}, \boldsymbol{g}_{Htt}$	$\sigma_{e^+e^- ightarrow { m t}ar t}, {{ m d} p_{peak}\over { m d} E_{cm}}, \ A_{FB}$	Scan 350
	m _w	$\sigma_{e^+e^- o WW}$	Scan 160

FCC-hh

Detector study

Study and optimization of the magnetic configuration and magnet layout of the FCC-hh detectors.

Capitalizing on IRFU's experience in LEP and LHC, we propose to study the magnetic configuration and magnet layout of the FCC-hh detectors.

- Comparative studies of the solenoid options with passive and active shielding.
- Study of the a large toroid option.

This may be extended for the FCC-ee detectors

Study of the operability of a TPC for a FCC-ee detector

Two important issues have to be studied

1) Ions

- Primary ions
- Back flow of ions

2) Low power electronic

 Minimization of material in the end plates

Synergy with IRFU contribution to ILD detector for ILC

Accelerator study

FCC-hh

Fully involved in EuroCirCol

Design of the arc lattice , e.g.

- Dynamic aperture evaluation
- Aperture and field quality specifications

⇔ 108 p-m

High-field Accelerator Magnet Design e.g.

- Dipole Magnet design
- Field quality evaluation, comparison and optimization

⇒ 36 p-m

- Arc Quad Magnet design
- Field quality evaluation, comparison and optimization

SRF system

- **RF** generation
- Cavities
- Cryomodule

IRFU is a major participant to XFEL (photo) and ESS SC-RF systems

Conclusions

Strong interest from IRFU in FCC Study

- ⇒ Physics Studies
- Detector Studies
- ⇒ Accelerator Studies

Potentially large group

- ⇒ 18 physicists
- ⇒ 9 engineers

have declared interest... but most people involved in operating experiments/projects

- ⇒ 144 p-m committed in EuroCIRCOL (pending its approval)
- Yet difficult to quantify the available p-m on other topics

Backup

N_v at FCC-ee (240 GeV)

LEP measurement : $N_{\nu} = 2.984 \pm 0.008$

TPC for FCC-ee

There is a believe that TPC is the ideal detector for e⁺e⁻. Certainly There have been used with success at LEP and LHC (ALICE)

- Minimum of material
- For excellent tracking capability (large number of measured points)
- Some PID with de/dx (5% resolution)
- Capitalization of studies done at IRFU (T2K/ILC) using micromegas
- Possible synergies with linear collider studies (ILD)

But cannot be used in all environments!

- R_{in} : 229 mm
- R_{out} : 1808 mm
- $L_z: 2 \times 2350 \text{ mm}$
- B=4 T
- σ_{R-φ} ~100 μm
- $\sigma_{R-Z} \sim 500 \ \mu m$
- dp/p² = 8 x 10⁻⁵ (full tracking : 2 x 10⁻⁵)

Most demanding conditions @ Z-pole

- ~33 kHz Bhabhas
- ~17 kHz of hadronic events with <mult.> ~20 (~1 evt / 60 μs avg)
- Total drift time ~50µs
- On average < 1 evt drifting in TPC
 - 2-hit r-z resolution is 8 mm (160 ns drift time) ⇒ evt mixing is negligible

TPC for FCC-ee : ions are the main issue

We need

- To improve simulations for FCC-ee environment
- **To carry out an R&D programme for measuring these effects**

TPC: Electronic power consumption

Typically, the present power per channel for high rate operation is 30-40mW. With 1 x 4mm² pads one gets 7-10kW/m²

This is manageable but requires but significant (excessive?) material will be needed to evacuate such a heat load. ILC solves the issue with power pulsing, not possible @ FCC-ee.

Conceptual architecture study to reduce consumption by factor 10

Other possible studies

- Comparative study of options for calorimetry and optimization for FCC-ee requirements of resolution/operability/cost
- Investigation of wireless powering and data transmission