

Medical applications of particle physics

Martina Bucciantonio

Giovanni Porcellana

Tera Foundation

Credits: Manuela Cirilli, CERN Knowledge transfer Life science section

CERN's mission

Tools of the trade

Detectors

Computing

HEP technologies

Radiotherapy

Medical imaging

Large scale **Computing** (Grid)

Grid computing for medical data management and analysis

Cancer is a large and growing challenge

Need: Earlier diagnosis, better control, fewer side-effects

- How?
 - New technologies imaging, dosimetry, accelerator & detector technology
 - Better understanding genetics, radiobiology...
 - Advanced healthcare informatics ...
- International **collaboration** if progress is to be maintained
- Although cancer is a common condition, each tumour is individual
 Personalised approach
 - Large patients data to understand the key drivers of the disease

Medical imaging

Wilhelm Röntgen (1845–1923)

1901: Nobel prize

8 November 1895: X-rays discovery

22 December 1895: first radiography

X-rays evolution

%

95

80

Magnetic resonance Imaging

More and more details

Birth of medical physics

Henri Becquerel

1896 - discovery of natural radioactivity

Mme. Curie thesis – 1904 α , β , γ in magnetic field

1898 - discovery of Radium
(used for "brachytherapy")

1903 - Becquerel, Pierre e Marie Curie share the Nobel prize in Physics

Pierre and Marie Curie

1911 - Marie Curie wins the Nobel prize in Chemistry

Positrons are used daily in oncology

PET = Positron Emission Tomography

PET: How it works

- Drug is labelled with positron
 (β+) emitting radionuclide
- Drug localizes in patient according to metabolic properties of that drug
- Trace (pico-molar) quantities of drug are sufficient
- Radiation dose fairly small (<1 rem = 0.01 Sv)

PET: Detection

Brain Metabolism in Alzheimer's Disease: PET Scan

Normal Brain

Alzheimer's Disease

ISOLDE

Isotopes for detection & treatment

Medical imaging and particle physics: The same challenge?

Similar challenges

- New scintillating crystals and detection materials
- Compact photo-detectors
- Highly integrated and low noise electronics
- High level of parallelism and event filtering algorithms in DAQ
- Modern and modular simulation software using worldwide recognized standards

Crystal PEM

- PET detector dedicated to breast cancer screening
 - extremely sensitive to small tumour masses
- Spatial resolution1-2 mm
- High counting sensitivity
- Short PET exam
- Coupled to ultrasound

Crystal Clear

- New scintillating materials
 - LuAP, phoswich LuAP-LSO (CERN patent)
 - other crystals
- New photodetectors (Avalanche PhotoDiodes)
- New low noise electronics
- New intelligent DAQ
 systems with pipeline and
 parallel architectures
- Better simulation GEANT 4
- Better reconstruction algorithms

Multimodal imaging

Primary lung cancer imaged with the Dual/Commercial scanner. A large lung tumor, which appears on CT as a uniformly attenuating hypodense mass, has a rim of FDG activity and a necrotic center revealed by PET.

PET/CT

3D Axial PET

Conventional concept

New 3D axial concept

Rings of block detectors

Axial arrangement of camera modules based on matrices of long crystals read out on both sides by HPDs

Towards digital imaging

- High contrast => accurate diagnosis
- Low dose
- Screening opportunities
- Access to preventive healthcare
- Storage, easy-access, sharing images

MediPix

- High Energy Physics original development:
 - particle track detectors
- Main properties:
 - fast fully digital device similar to the electronic chip in a digital camera but sensitive to X-rays instead of visible light
 - good conversion efficiency of low energy X-rays
 - it can create the first true colour images with X-rays

Proton radiography

- Early studies in the 70s

 High-rate medical diagnostics fully digital=> increase in the recording speeds in medical diagnostic tools, leading to faster scanning and lower body doses than X-rays.

Images courtesy of H. Sadrozinski

Proton radiography TERA Foundation

GEM – Gas electron multiplier 1996: Fabio Sauli at CERN for HEP experiments

X-COORDINATE

Computing for medical applications

Data and Resources

Mammogrid

A grid mammography database

Second Opinion

- Cancer Screening
- Education and Training
- Reference Database / Repository

Oncology

 Breast Cancer (microcalcifications and masses)

Simulation

HEP technologies

Radiotherapy

Medical imaging

Large scale **Computing** (Grid)

Grid computing for medical data management and analysis

Accelerators for cancer treatment

Cancer and its treatments

- \Rightarrow Every year millions of new cases globally every year
- ⇒ Second most common cause of death in Europe, Canada, US

The 3 Cs of radiotherapy

- Cheap:
 - the least expensive cancer treatment method (around 5% of total cost)
- Cure:
 - good cure rate (30-40%)
- Conservative:
 - generally non-invasive, fewer side effects

Conventional radiotherapy dominated by linear accelerators

- \Rightarrow 20 000 patients per year every 10 million inhabitants
- \Rightarrow 1 linac every < 250 000 inhabitants

Alternatives

- 1932: Cyclotron by Ernest Lawrence
- 1946: article by Robert Wilson on using protons for therapy

 \Rightarrow Birth of hadrontherapy

 1954: first patients treated in Berkeley

Hadrontherapy

Protons vs X-rays

Protons vs X-rays (2)

Hadrons:

\diamond Critical areas

 \diamond Children

♦ Radio-resistant tumours (carbon ions)

Proton Treatment @ GSI

Raster scanning

PIMMS at CERN (1996-2000)

Proton Ion Medical Machine Study

CNAO, Italy (Pavia)

TERA Programmes: PERLA

Protontherapy and Exotic Radioisotopes from Linked Accelerators

TERA

TERA Programmes: TULIP

TUrning LInac for Protontherapy

ENVISION

https://cds.cern.ch/record/1611725

ENV SION

European NoVel Imaging Systems for ION therapy

The collaborative spirit of particle physics and medical applications

Thanks for your attention!!!