Research and development activities at EPFL

Eric Boillat1

¹Laboratoire de Gestion et Procédés de Production Institut de Génie Mécanique EPFL

Geneva, november 05, 2014

Content

Research activities at LGPP-EPFL

AM Initiative at EPFL

LGPP specific expertise

Operation management:

- Supply chain management
- Extended and virtual enterprise
- Production Planning & control
- Integration of Human aspects
- Modeling & simulation

Production processes:

- Additive production process
- · Selective laser sintering/melting
 - Modelling and simulation of SLS/SLM
 - Rapid tooling,
 - Rapid manufacturing,
 - Thermal optimization of parts.

Research and developments activities at LGPP

SLS equipments available at LGPP

Standard EOSINT M250

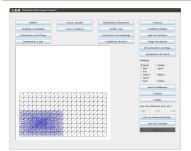
Experimental machine

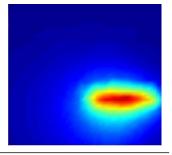
- CO2 laser
- Bronze Powder
- 50 μm layers

- Nd:YAG pulsed / Ytterbium-fiber CW lasers
 - controlled atmosphere
 - Ti, Ni, Au, Ag, 316L, H13,...
 - up to 20μm layers

Main challenges for SLS-SLM(-EBM-DMD)

List of challenges and of the associated research directions


Challenge	EPFL Activities/Projects	Benefits for the process		
(a) Extensi	on to new materials			
	AM for Metal Matrix Composite AM of multimaterial parts	part optimization opening to new applications		
(b) Improve	ed part qualities			
	Strategies to reduce therm. stresses Strategies to get higher accuracy Power manag. to increase productiv.	reduction of postprocessing cost and waste reduction opening to new applications		
(c) Process control and monitoring				
	Control of powder bed deposition Control of powder consolidation Strategies for feedback control	more reliability part certification		


Research activities at LGPP (1)

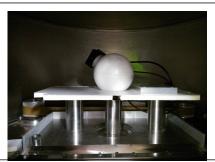
Development of a comprehensive finite element model:

Parameters optimization, test of control strategies

Input Output

- scanning strategy, laser param.
- powder thermal properties
- powder mechanical properties

- temperature field/part geom.
- thermal stresses/deformation
 - possibly microstructures


Research activities at LGPP (2)

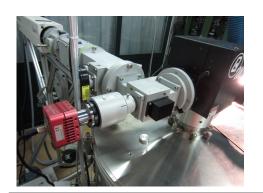
Development of specific set-up for powder diagnoses

Optimization for new materials

Absorptivity measurements

Conductivity measurements

laser-matter coupling

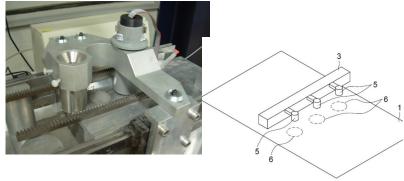

• dynamic of energy flow

Research activities at LGPP (3)

Development of specific set-up for process vision

Development of specific set up for process vision

Process control and monitoring


	Paramétres opérat					
Paissance	V70550	Mode			×	22,188
[W]	[mm/s]	[-]				_
10	25	TEM01 con	tinus	1000000	1111	1111
	Paramétres vidé	io .			ш	111
Fréquence	Temps of int.	Résolute	201	+ 1	+1+1	# I I .
[Hz]	[ms]	[mm/pi	4	500000	1111	111
10	100	0.043		22222	1111	100
	Stratégie de sca			100000	ш	111
Distance y	Distance h	Correspond	ance	L	101	J Jakon
(mm) 30	[mm] 0.01	[-] 1 kane		1	•	
	0.02	1.40-4				
	b)		c)		d)	
a) 🥻		4	c)		d)	
		4	c)		d)	
•		4		٥	d)	•
7.5 mr		4	c) 8		d)	
7.5 m	<u>.</u>	4				
7.5 m	<u>.</u>	•				
7.5 me	<u>.</u>					
7.5 m	<u>.</u>	0				
7.5 me	<u>.</u>					

Research activities at LGPP (4)

Detection methods based on eddy-current measurements

Detection methods based on eddy edirent measurements

Process control and monitoring

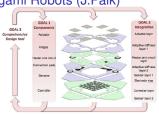
2 AM Initiative at EPFL

Increased recruitment in the field of manufacturing

Existing chairs

LAB	Prof	Field
INSTANT-LAB	Prof. S. Henein	micromechanical and horlogical design
LTMM	Prof. R. Logé	metallurgy and metal forming

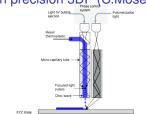
Newest chair

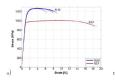

LAB	Prof	Field
tbf.	almost found	Multi-scale manufacturing technologies

Planned chairs

LAB	Prof	Field
		High precision robotics Design of parts with gradient-properties and multi-materials AM of heterogeneous parts (embedding sensors, electronics

Four new Faculty (STI) Projects


Origami Robots (J.Paik)


Structured fibers (F.Sorin)

High precision 3DP (C.Moser)

Tailoring microstruc. (R.Logé)

3D Printing Service at EPFL

Three 3D printing machines are now up for polymers

PolyJet	FDM	SLS
		900 — A

Great success

- 23 labs
- 49 projects (34 research, 15 education)
- · Plan to invest in a new metal machine at Microcity