FCC ring layout

J. Wenninger with input from J. Osborne (also slides), D. Schulte, M. Benedikt, P. Lebrun

Ring layout and RF distribution FCC-hh layout proposals Matching FCC with the local geology

Crossing points & IRs

- □ We consider a machine with 2 rings. The 2 rings are side by side, i.e. no vertical stacking (dispersion $\rightarrow \varepsilon$, polarization).
- □ Follow some *trivial* considerations on the geometry.
 - ✓ The path length of both beams must be identical (same energy & v/c). Consequently they must spend the same fraction of the circumference on inside and outside ring → symmetry constraint on crossing points.
 - ✓ At every crossing (with or without collisions) the beams exchange roles wrt inside and outside → to close the ring properly the total number of IPs and crossings must be an even number.
 - ✓ A priori I assume that we have only crossings at experiments no extra ones (beam-beam, need for separation, extra bending → energy loss...).

with N integer

Simplest case with 2 crossing points / experiments and a circular ring.

> They must be on opposite sides of the ring: path length is the same for both beams.

Additional crossing points / experiments and a circular ring.

They must be placed symmetrically around the symmetry axis defined by first 2 experiments / crossings.

A famous example

Racetrack

To minimize the number of crossings \rightarrow no crossing in the ½ arcs \rightarrow the two beams must exchange roles (in \Leftrightarrow out) in the long straights.

- There must be AT LEAST ONE crossing / experiment in each long straight !
- > The number of crossings / experiments per long straight must be an **ODD number**!
 - -- 2 experiments per long straight does not work (or one needs extra crossings !)

A racetrack ring with 4 experiments and no extra crossing has one long straight with one experiment and the other with 3 experiments.

- The RF system should ideally be distributed over all LSS to minimize the energy sawtooth and the associated optics perturbations.
 - And the distribution should ideally be symmetric around the ring.
- Each experiment should be surrounded by RF sections to ensure that the energy offset can be minimized in the final focus region.
 - Additional RF stations may be required along the ring to control the energy excursions due to the energy sawtoothing – impact on optics.
- Energy loss per turn (100 km):
 - − 120 GeV: $\Delta E_t = 1.67$ GeV $\rightarrow \Delta E_t/E = 1.4\%$
 - − 175 GeV: $\Delta E_t = 7.7$ GeV $\rightarrow \Delta E_t/E = 4.3\%$
- □ If only 2 LSS are equipped with RF (opposite sides of ring):
 - 120 GeV: peak sawtooth = $\pm \frac{1}{4} \Delta E_t / E = \pm 0.35\%$
 - 175 GeV: peak sawtooth = $\pm \frac{1}{4} \Delta E_t / E = \pm 1.1\%$

Ring with 4-fold symmetry – 8 RF stations surrounding the experiments. Same RF voltage for each station.

Ring layout and RF distribution

FCC-hh layout proposals

Matching FCC with the local geology

- Two (very preliminary) proposals for FCC-hh by D. Schulte.
- One proposal is a ring with (almost) 10-fold symmetry, one proposal is a racetrack.
 - Bear in mind that the length of the sections for extraction (dump) and collimation are not well known, not the total number of straights..
- The ring proposal actually violates the symmetry rule on the distribution of experiments that also applies to the hh machine.
- □ The racetrack has *pseudo* long straights:
 - The long straight is split into 3 straight sections and small bending sections (> 100 mrad) to lower potential muon backgrounds.

- The proposed FCC-hh layout can easily be adapted for FCC-ee since the space requirements for injection, extraction and collimation are much reduced.
 - Can fit both injections in the same LSS, and the same remark is valid for collimation or extraction system.
 - RF installed wherever necessary to control the sawtooth.

RF & sawtooth - asymmetric ring

Consider the FCC-hh ring of the previous slide with 8 RF stations surrounding the 4 experiments - same RF voltage for each station.

RF & sawtooth - asymmetric ring

Consider the same configuration as before, but this time with asymmetric RF voltage/station.

RF distribution

- □ For the previous case, additional RF stations in 'Coll1' and 'Coll2' (half-way) would lower the peak energy sawtooth to $1/10 \Delta E_t/E \rightarrow$ peak sawtooth of:
 - <0.2% at 120 GeV OK.
 - ~0.4% at 175 GeV OK?
- □ In case of asymmetries, the RF voltage must potentially be different on the two sides of each experiments → on-momentum in FF.
- In case a 10-fold symmetric ring is chosen, it would be more appropriate to have a layout of experiments 'a la LHC':
 - 2 experiments opposite of each other, and 2 experiments on either side of one of the 2 experiments.
- For the hh option the 2 LSS around the isolated experiment could be used for injection, and located at the boundary of LHC → see later !

suppressors in green

Ring layout and RF distribution FCC-hh layout proposals Matching FCC with the local geology

- Last Friday 26.09.2014 we had a joint meeting with FCC-hh, FCCee, infrastructure and a representative of the ARUP company to evaluate ring layout proposals.
 - Tunnel Optimisation Tool (TOT) provided by ARUP.
 - Local geology data from the Swiss geological company GADZ and from the French Geological Society (BRGM).

Many of the following slides are borrowed from J. Osborne.

The 4 options

N.B LHC injection was not decided in referenced document

CERN

300m 200m 100m 0m

0km

10km

20km

30km

40km

Distance along ring clockwise from CERN (km)

50km

60km

Introduction to options

Some civil engineering constraints:

- Tunnel depth >20m into Molasse below Lake Geneva, The Rhone and Les Usses
- Limit of 15 bar (150m depth) in limestone for a closed tunnel boring machine

70km

80km

□ Civil engineering preferences:

- Minimise tunnel extent in limestone and moraines,
- Minimise tunnel shaft depths,
- *Minimise interaction with limestone.*
- Two interesting options (weighting the different factors) that also satisfy the overlap with the LHC ring are presented in the next slides.
- All options consider a FLAT ring. No kinks are considered / necessary for the moment.
 - Machine plane: typical slopes of 0.5-1%.

Options 5 – 8; CE & LHC Connection Considered

5 - 83km Circular - Considering CE & LHC Connection

Alignment Profile

Geology Intersected by Tunnel

27

Options 5 – 8; CE & LHC Connection Considered

7 – 100km Circular – Considering CE & LHC Connection

In the discussions we agreed on the following next iteration.

- We consider a modified racetrack with somewhat longer 'short arcs' up to ~4 km length.
- One experiment should be located close to the CERN sites of Meyrin and/or Prevessin.
- The injection lines of FCC-hh and their junction with LHC (difference in depth, total horizontal bending) present important constraints:
 - Injection into FCC-hh in the two straights around the 'CERN-site experiment'.

9/29/2014

Modified racetrack

Orientation

- The 4km short arcs have the SAME bending radius than the long arcs.
- The same structure repeats on the opposite side of the pseudo-racetrack.

Almost circular racetrack

- The geometry of this oval racetrack will be modeled such that it can be entered into the geology tool.
- J. Osborne & will try to match this shape with the local geology for 4 circumference values:
 - -- C= 80, 86.6, 93.3 and 100 km (3×LHC, 3.25×LHC, 3.5×LHC, 3.75×LHC)
 - -- The length of the straight sections remains constant \rightarrow adapt the arcs.
- The four options will be evaluated again from the geological point of view. The location of the access shafts will be analyzed.
 - -- Next iteration in a few weeks.
- □ From the point of view of FCC-ee I suggest that we continue with the ring layout for the moment → get a closed ring with 12 (or 10 LSS).
 - -- Wait until the dust settles.

