Status of the FCC-ee interaction region design

R. Martin 1 R. Tomás 1 A. Bogomyagkov 2 L. Medina 3

¹CERN, Geneva, Switzerland

²BINP, Novosibirsk, Russia

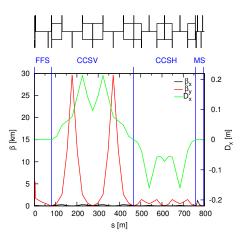
³Universidad de Guanajuato, Mexico

HF2014 Workshop, Beijing, China October 9th-12th, 2014

Acknowledgments: Thanks to B. Holzer and B. Härer

1 FCC-ee General information

- 2 CERN IR design
- 3 BINP IR design
- 4 Comparison and difficulties


- FCC-ee project:
 - high-luminosity circular e^+e^- -collider
 - center-of-mass energies:
 - 90 GeV (Z-Pole)
 - 160 GeV (W pair production threshold)
 - 240 GeV (Higgs resonance)
 - 350 GeV ($t\bar{t}$ threshold)
 - predecessor of a new 100 TeV pp-collider in same tunnel (80-100 km) in Geneva area
- Interaction region:
 - constraints by use of one tunnel for FCC-ee and FCC-hh (tunnel size \rightarrow cost)
 - most challenging setups: Z (high luminosity) and $t\overline{t}$ (beamstrahlung)

	Ζ	tŦ
Beam energy [GeV]	45.5	175
Bunches / beam	16700	98
Bunch population [10 ¹¹]	1.8	1.4
Energy loss / turn [GeV]	0.03	7.55
Beta function at IP β^*		
- horizontal [m]	0.5	1
- vertical [mm]	1	1
Transverse emittance ϵ		
- horizontal [nm]	29.2	2
- vertical [pm]	60	2
Energy spread [%]	0.06	0.19
Luminosity / IP $[10^{34}cm^{-2}s^{-1}]$	28.0	1.8

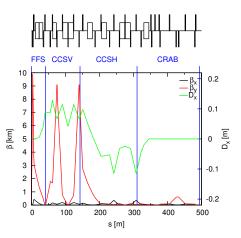
100 km option. Bunches / beam and bunch population determined by the design limit of 50 MW synchrotron radiation per beam.

イロト イポト イヨト イヨト

- based on generic lattice for LINACs
- local chromaticity correction necessary due to high luminosity goals
- spacial separation of functions \rightarrow modular

CERN IR design. Currently only $t\overline{t}$ setup exists.

- L^* as small as possible (chromaticity) but large enough for detector
 - \rightarrow L^{*} = 2*m* considered reasonable
- crossing angle:
 - small crossing angle preferred to keep tunnel diameter small and dipole fields small
 - shared FFS quadrupoles (6 σ_{p_x} separation):

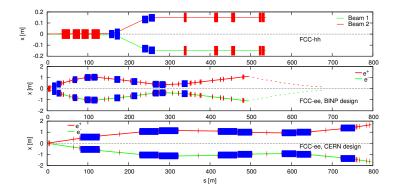

	Ζ	tŦ
average Power from Q1 [kW]	96.8	3.5
average Power from Q2 [kW]	423.0	15.1

Values are per beam and per Quadrupole.

 \rightarrow separate quadrupoles for each beam

• magnet studies for SuperB and BINP suggest separation of $\approx 22mm$ \rightarrow minimum crossing angle = 11mrad

- Different approach: crab waist scheme increases luminosity at lower energies (Z,W)
- no considerable advantage over head-on collision scheme at high energies (H, tt)
- crossing angle = 30*mrad*
- Parameters chosen according to crab waist scheme, but also allow running at all energies with one lattice



BINP IR design.

Parameters for crab waist scheme

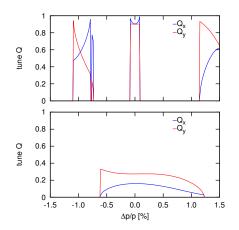
	Ζ	tT
Beam energy [GeV]	45.5	175
Bunches / beam	29791	33
Bunch population [10 ¹¹]	1	4
Energy loss / turn [GeV]	0.03	7.7
Beta function at IP β^*		
- horizontal [m]	0.5	0.5
- vertical [mm]	1	1
Transverse emittance ϵ		
- horizontal [nm]	0.14	2.1
- vertical [pm]	1	4.3
Energy spread [%]	0.11	0.26
Luminosity / IP $[10^{34}cm^{-2}s^{-1}]$	212	1.3

100 km option, crab waist scheme.

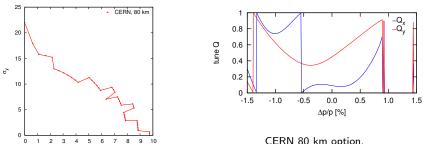

- tunnel diameter of both FCC-ee designs pprox 2m
 ightarrow reasonable
- still need for matching section bending beams back together
- CERN design far too long, even for longer FCC-hh, BINP design might work out

- larger luminosity in crab waist scheme (8x at Z, 2x at W, 1.6x at H) but has stronger dipole fields
- overall synchrotron radiation in 4 IPs for BINP design: 5.6MW($\approx 10\%$ of overall synchrotron radiation budget)
- last dipoles in BINP design close to IP and high critical energy → shielding difficult

	Ζ	tī
Average total power		
per side per IP [kW]		
- CERN	69	69
- BINP	730	710
Energy loss		
per particle [MeV]		
- CERN	0.4	84
- BINP	1.0	220
Average power		
in last Dipole [kW]		
- CERN	7.3	7.3
- BINP	8.2	8.0
Critical Energy		
in last dipoles $\hbar\omega_c$ [keV]		
- CERN	8.8	503
- BINP	20	1100


Dynamic aperture

- first tracking calculations with full 100 km arc lattice were conducted
- all simulations for on-momentum particles, 500 turns, without radiation
- CERN: up to 12 σ_x and 25 σ_y
- BINP: only 8 σ_x but 100 σ_y which is important because vertical beamsize is very small → imperfactions have large relative impact


Momentum acceptance

- relaxed requirements for lower energies
- both design far from goal yet (CERN $\pm 0.1\%$, BINP from -0.6% to +1.2%)

top: CERN 100 km, bottom: BINP 100 km. For empty sections no stable orbit was found.

CERN, 80 km option

CERN 80 km option.

 σ_{x}

- rematching of both designs to lower energy arc lattice
 - Dynamic aperture
 - momentum acceptance
- CERN design still at very early stage, a lot of potential for optimization (dynamic aperture, momentum acceptance)
- Studies of dynamic aperture vs. momentum deviation

Any comments welcome

▲ ■
 > ■
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >

イロト イヨト イヨト イヨト