

(Tin Le he

Constraints on the FCC-ee lattice from the compatibility with the FCC hadron collider

Bastian Haerer (CERN, Geneva; KIT, Karlsruhe), Wolfgang Bartmann, Bernhard Johannes Holzer, Daniel Schulte, Rogelio Tomas, Jorg Wenninger, Frank Zimmermann (CERN, Geneva), Michael James Syphers (MSU, East Lanning, Michigan), Ulrich Wienands (SLAC, Menlo Park, California)

Future Circular Collider Study

Constraints on FCC-ee lattice design
Bastian Haerer (bastian.harer@cern.ch)

Future Circular Collider Study

Consists of three sub-studies:

- FCC-hh: 100 TeV proton collider
- FCC-ee: 350 GeV lepton collider
- FCC-he: electron-proton option

Every study has its own requirements, but technology for FCC-hh is most challenging!

Constraints on FCC-hh

- Magnet technology $\left(\mathrm{Nb}_{3} \mathrm{Sn}\right)$
- Shape (racetrack vs. circle)
- Geology
- Overlap with LHC (if used as injector)
- Injection, beam dump, experiments

Not covered today:

- Constraints from hosting FCC-hh and FCC-ee in the tunnel at the same time
- Constraints from FCC-he

1) Bending radius

Proton beam energy: $\quad 50 \mathrm{TeV}$
Beam rigidity: $\quad B \rho=p / e \approx 1.67 \times 10^{5} \mathrm{Tm}$

$$
\begin{array}{ll}
\mathrm{B}=20 \mathrm{~T}: & \rightarrow \rho=8.5 \mathrm{~km} \\
\mathrm{~B}=16 \mathrm{~T}: & \rightarrow \rho=10.7 \mathrm{~km}
\end{array}
$$

$B=16 \mathrm{~T}$ achievable with $\mathrm{Nb}_{3} \mathrm{Sn}$ technology!

2) Circumference

- Approx. 67\% of circumference C are bends:

$$
\begin{array}{ll}
B=20 \mathrm{~T}, \rho=8.5 \mathrm{~km} & \rightarrow C=80 \mathrm{~km} \\
B=16 \mathrm{~T}, \rho=10.7 \mathrm{~km} & \rightarrow C=100 \mathrm{~km}
\end{array}
$$

- RF frequency should be a multiple of RF frequency of LHC (bunch to bucket transfer)

$$
\begin{aligned}
& \rightarrow C=3 \times 26.7 \mathrm{~km}=80.1 \mathrm{~km} \\
& \rightarrow \mathrm{C}=4 \times 26.7 \mathrm{~km}=106.8 \mathrm{~km}
\end{aligned}
$$

3) Layout objectives

Hadron machine

- Max. momentum limited by

$$
\oint B(s) d s
$$

\rightarrow High fill factor
\rightarrow As few straight sections as possible

Lepton machine

- Limited by synchrotron radiation power

$$
P_{\gamma}=\frac{2}{3} \alpha \hbar c^{2} \frac{\gamma^{4}}{\rho^{2}}
$$

\rightarrow High fill factor
\rightarrow High bending radius
\rightarrow Many straight sections for RF to limit sawtooth effect

FCC-ee: Sawtooth effect

12 RF sections

Energy loss per turn (175 GeV beam energy): $\quad \mathrm{U}_{0}=7.7 \mathrm{GeV}(4.3 \%)$
4) Shape

Circular shape (like LHC)

- Preferred for lepton collider

- Less resonances due to superperiodicity

Racetrack (like SSC)

- Most of the infrastructure can be concentrated at two main sites
- Chromaticity correction easier

5) Geology

Boundary Limits:

- East: Pre-Alps
- South: Rhone, Vuache Mountain
- West: Jura
- North: Lake Geneva

Lake Geneva

- The lake gets deeper to the North - The molasse rockhead as well

\rightarrow The tunnel level must be deeper in the earth

80 km circle

Courtesy: John Osborne, Yung Loo

Constraints on FCC-ee lattice design
Bastian Haerer (bastian.harer@cern.ch)

100 km circle

Courtesy: John Osborne, Yung Loo

Constraints on FCC-ee lattice design Bastian Haerer (bastian.harer@cern.ch)

Tilting the tunnel

- LEP/LHC: 1.42 \%
\rightarrow Maximize tunnel extend in molasse, minimize tunnel extend in limestone and moraines
\rightarrow Minimize shaft depths

Courtesy: John Osborne

100 km circle with tilt

Courtesy: John Osborne, Yung Loo

Constraints on FCC-ee lattice design
Bastian Haerer (bastian.harer@cern.ch)

6) Location relative to LHC

FCC and LHC should overlap, if LHC is used as injector
Required distance L for transfer lines depends on:

- Difference in depth d
- Magnet technology
- Beam energy
- Max. slope of tunnel 5\%

Distance for transfer lines

- Required length: $L=500-1500 \mathrm{~m}$

7) Length of Long Straight Sections

Space for septum, kicker magnet and absorbers for machine protection

Injection: Energy: 3.3 TeV
 - 600 m

Beam dump: Energy: 50 TeV

- 800 m - 1000 m (?)

8) Experiments

Constraints on FCC-ee lattice design Bastian Haerer (bastian.harer@cern.ch)

Experiments FCC-hh

Court. R. Alemany, B. Holzer

Experiments FCC-ee

Completely different IR design:

- Crossing angle
- $\beta_{y}=1 \mathrm{~mm}, L^{*}=2 \mathrm{~m}$!!!
- Local chromaticity correction scheme
- IR length: $\approx 1600 \mathrm{~m}$

More about IR design: Roman Martin's presentation

Court. R. Martin

Current FCC-ee design

Circular shape, 100 km circumference

- 12 straight sections
\rightarrow Length: 1.5 km
- 4 experiments
- Length of arcs: 6.8 km $\rightarrow \rho \approx 10.6 \mathrm{~km}$

Details of the FCC-ee lattice were presented in my other talk

Resume

- Magnet technology sets constraints on bending radius and circumference
- Compromise for the layout must be found
- Injection, beam dump and experiments define length of the straight sections
- Geology and transfer lines define location of FCC

药筑
Federal Ministry

4.2.2 Clustered Interaction Regions

An example of clustered IRs is shown in Fig. 3.3-2. The two IRs in the West cluster, adjacent to the two utility sections, are the high luminosity IRs with low β^{*}. The two IRs opposite the two utility sections are regarded in this example to be future IRs, undeveloped at the startup of the SSC, and optically identical to the two utility sections. The remaining pair of IRs are similar in structure to the low- β^{*} ones, but they have intermediate luminosity with a modest value of β^{*} and extended free space about the interaction points.

In this section, we discuss the various issues associated with clustering the IRs. Figure 3.3-2 is just one of several possible clustering configurations. Other configurations are sketched in Fig. 4.2-1. The layout of Fig. 3.3-2, the one selected for the conceptual design, is designated by $(2,4)_{b}$.

The beam optics, beam-beam effects, and background radiation are some of the accelerator physics issues to be considered when discussing clustered interaction regions. The results of a study of these questions [4.2-7] are summarized in the present section. More information on the beam-beam effect can be found in Section 4.5 and more on the backgrounds in Section 4.8. The main conclusion of the study is that both distributed and clustered IRs are acceptable for the SSC design from the accelerator physics point of view. However, the clustered scheme is more cost effective because of considerations concerning the conventional facilities and so was recommended for the SSC concentual desion

Generally speaking, evenly distributed IRs permit a higher superperiodicity and thus fewer resonances in the tune space. For the case of SSC, this means a superperiodicity of 6, if the utility sections and crossings are ignored. Realization of the consequences of high superperiodicity requires correlation of particle motion in magnets that are separated by $1 / 6$ of the ring circumference, i.e., about 14 km . Because of various magnet field and alignment errors, correlation over this long distance is not likely to be maintained. The superperiodicity is thus broken in reality and all low-order resonances, systematic and accidental, need to be avoided.

The fact that a high superperiodicity is not very important for the SSC is demonstrated by particle tracking using the programs PATRICIA [4.2-8] and RACETRACK [4.2-9] on various lattices $[4.2-10]$. The maximum amplitude of stable motion (referred to as the dynamic aperture in Sections 3.2 and 4.3) is plotted in Fig. 4.2-2 as a function of momentum deviation $\delta=\Delta E / E$. Random magnet multipole errors (Table 4.3-1) are included in these simulations. For each case, the same tunes are used, away from systematic resonances. The dependence of dynamic aperture on the IR layout, and thus the superperiodicity, is not significant.

Unequally distributed RF

FCC-he design parameters

collider parameters	FCC ERL	FCC-ee ring		protons
species	$e^{-}\left(e^{+} ?\right)$	$\boldsymbol{e}^{ \pm}$	$e^{ \pm}$	p
beam energy [GeV]	60	60	120	50000
bunches / beam	-	10600	1360	10600
bunch intensity [10 ${ }^{11}$]	0.05	0.94	0.46	1.0
beam current [mA]	25.6	480	30	500
rms bunch length [cm]	0.02	0.15	0.12	8
rms emittance [nm]	0.17	$1.9(x)$	0.94 (x)	0.04 [0.02 y]
$\beta_{x, y}{ }^{*}[\mathrm{~mm}]$	94	8, 4	17, 8.5	400 [200 y]
$\sigma_{x, y}{ }^{*}[\mu \mathrm{~m}]$	4.0		2.0	equal
beam-b. parameter ξ	($D=2$)	0.13	0.13	0.022 (0.0002)
hourglass reduction	$\begin{gathered} 0.92 \\ \left(H_{D}=1.35\right) \end{gathered}$	~ 0.21	~ 0.39	F.Zimmermann ICHEP14, June
CM energy [TeV]	3.5	3.5	4.9	
luminosity[$10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$]	1.0	6.2	0.7	PRELIMINARY

LHeC: IR layout

Interaction Regions for ep with Synchronous pp Operation

Still work in progress: may not need half quad if $L^{*}(e)<L^{*}(p)$

Courtesy Max Klein

- A similar interaction scheme needs to be designed for FCC-he

Experiments

Constraints on FCC-ee lattice design
Bastian Haerer (bastian.harer@cern.ch)

