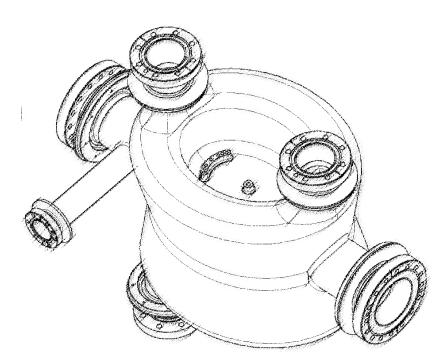


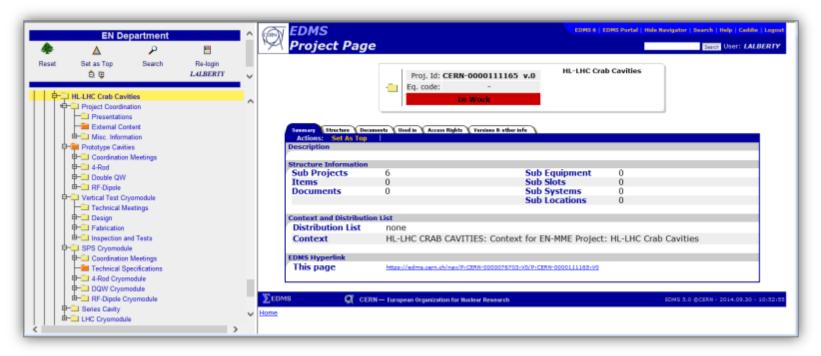
Crab Cavity Manufacturing Readiness Meeting CERN, Switzerland, 1-2 October 2014

CERN Engineering Specification

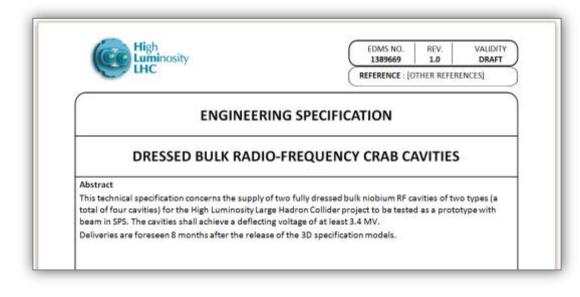
Luis Alberty (I.alberty@cern.ch) on behalf of CERN's EN/MME Team


25' Talk + discussion

Summary

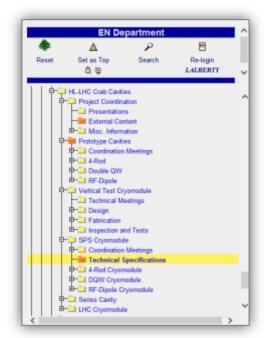

- Engineering documentation: EDMS guided tour
- CERN's Engineering Specification:
 - Scope
 - Approach
 - Structure & system architecture
 - Processes
 - Steps
 - Content bare cavities with interfaces:
 - Materials
 - Operational modes and states
 - Interfaces
 - Design
 - Qualifications prior to manufacturing
 - Manufacturing
 - Finalization of manufacturing process
 - Verification
- Conclusions and future work

Engineering documentation: EDMS guided tour


EN-MME/CC Engineering Structure in EDMS:

(https://edms.cern.ch/nav/P:CERN-0000076703:V0/P:CERN-0000111165:V0)

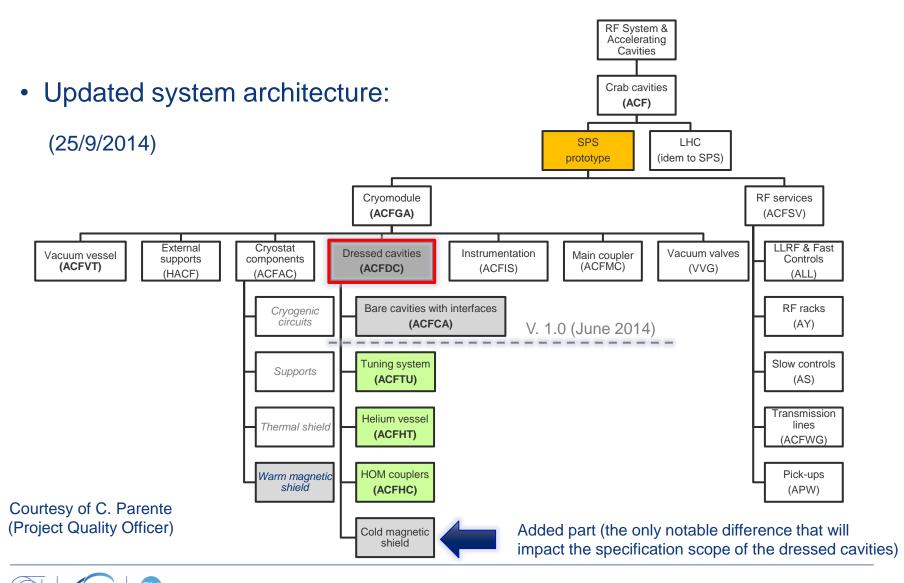
CERN Engineering Specification: scope


• Where to find it:

https://edms.cern.ch/document/1389669/1

• Scope: SPS tests / dressed bulk Radio-Frequency Crab Cavities

2 x 2 types to be tested as prototypes

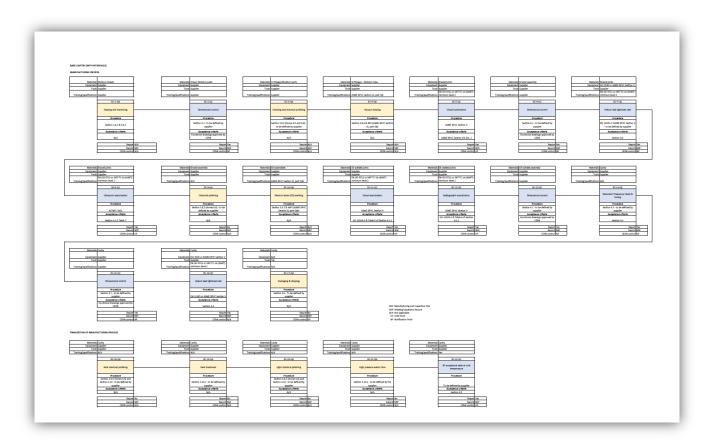

CERN Engineering Specification: approach

- The approach to the specification is based on*:
 - 1. Definition of the system architecture, in order to allow clearly identifying the entities to which the specification is addressed;
 - 2. Identification of the processes through which each entity is obtained;
 - 3. Specification of the requirements and verification measures entity by entity, in a bottom-up sense.

*This process was carried out with the support of the Project Quality Office

CERN Engineering Specification: system

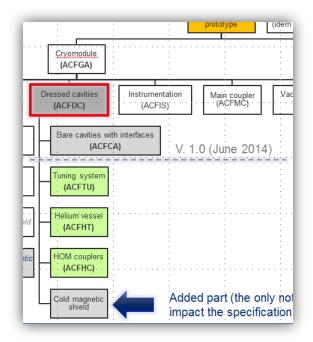
ENGINEERING


CERN Engineering Specification: processes

- The main processes through which each entity is obtained are the following:
 - Design;
 - Qualifications prior to manufacturing (materials, procedures);
 - Manufacturing & assembly;
 - Final Inspection and acceptance tests;
 - Shipping.
- Technical requirements and verification measures were defined for each specific process, for a given entity.

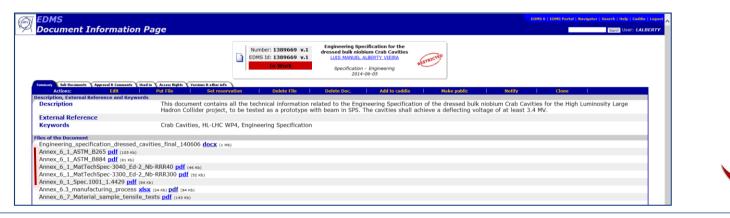
CERN Engineering Specification: steps

• Key processes known in advance can be specified by steps:



CERN Engineering Specification: content

- The following **entities** and key **processes** are covered by the first version of the Engineering Specification:
 - Bare cavities (with interfaces)
 - Technical requirements
 - <u>Materials</u>
 - Operational modes and states
 - Interfaces
 - Design
 - Qualifications prior to manufacturing
 - Manufacturing
 - Finalization of manufacturing process
 - Verification of the bare cavities (with interfaces)
 - Dimensional controls
 - NDT of welded joints
 - Frequency check and tuning
 - <u>Helium leak tightness</u>



Bare cavities with interfaces: materials

• The following materials are specified (§3.2):

Components	Material	Applicable documents
Flanges	Stainless Steel	Material Technical Specification N°1001
	Niobium-titanium	- ASTM B884 11- Replaced by MTS nº 4455 (XFEL/008)
Bare cavity – body	RRR=300 Niobium	Material Technical Specification N° 3300
Bare cavity - reinforcements	RRR=40 Niobium	Material Technical Specification N° 3040
Helium vessel	Grade 2 Titanium	ASTM B265-13a

• Detailed information is given by annex 6.1:

Bare cavities with interfaces: OM & States

• Three different states of pressure and temperature are foreseen (§3.4):

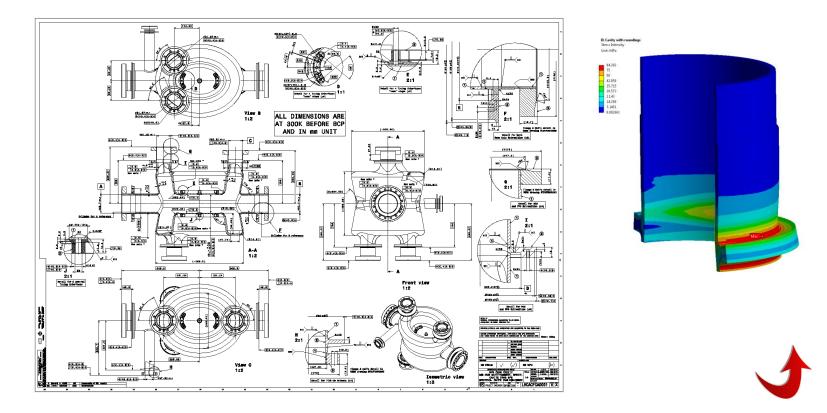
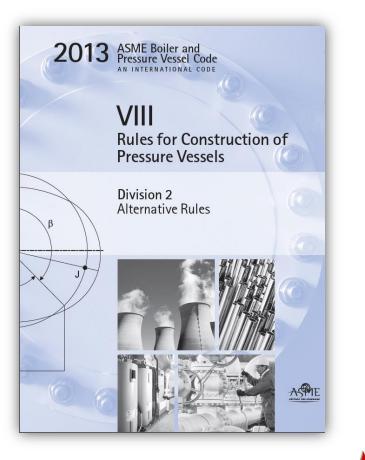

	Load cases		Internal pressure [MPa-absolute]	External pressure [MPa-absolute]	Temperature [K]	Classification (for selection of safety factors) ASME BPVC
\longrightarrow	Nominal	Fluid process	20 x 10 ⁻⁴	Vacuum (0)	2	Sustained
	conditions	volumes				(SF= 1.5)
		Vacuum volume	Vacuum (0)	0.1013	293	
		UHV volume	Vacuum (0)	20 x 10 ⁻⁴	2	
		(bare-cavities)				
\longrightarrow	Design	Fluid process	0.18	Vacuum (0)	293	Sustained
	Conditions	volumes				(SF=1.5)
		Vacuum volume	Vacuum (0)	0.1013	293	
		UHV volume	Vacuum (0)	0.18	293	
		(bare-cavities)				
\longrightarrow	Test	Fluid process	0.26	Vacuum (0)	293	Occasional
	conditions	volumes	(1.43 x 0.18)			(SF=1.05)
		Vacuum volume	Vacuum (0)	0.1013	293	
		UHV volume	Vacuum (0)	0.26	293	
		(bare-cavities)		(1.43 x 0.18)		

Table 1: Load cases for the design of the bare cavities

Bare cavities with interfaces: interfaces


• The requirements for interfaces (mainly dedicated flanges) are presented on issued drawings (§3.5):

Bare cavities with interfaces: design

- § 3.6.1 Design is to be done according to ASME BPVC Section VIII Div. 2 (alternative rules);
- A mechanical design report shall be submitted to CERN for approval;

Bare cavities with interfaces: qualifications

- Prior to manufacturing (§ 3.7) :
 - Functional and manufacturing drawings (including welds);
 - Manufacturing and inspection plan (MIP);
 - Mechanical assessment of welds (design reports);
 - Detailed welding plan, including amongst other:
 - Welding quality documents (WPQR, BPQR, WPS, BPS, ...)
 - Material qualifications (next slide);
 - other...

Bare cavities with interfaces: qualifications

• Material qualifications summary:

Material	Shape	Requirements
Nb RRR=300	Flat	Mechanical tests, UT & RRR measurements for every batch
		CERN requires 3 test samples of each direction
		Material shall conform to R04220-Type 5 ASTM B393-09e1 + AC
		Additional Criteria include minimum mechanical properties at RT
Nb RRR=40	Flat	Same as for Nb RRR=300, but R04220-Type 1 ASTM B393-09e1
Nb55Ti	All	CERN requires 3 test samples of each direction
		Shall conform to MTS nº4455 (similar to XFEL/008)
		Additional tests will be required (metallographic, EDS)
Stainless steel	All	Supplied by CERN. Certification can be provided upon request

Bare cavities with interfaces: qualifications

• Joining techniques qualification - summary:

Joining tec.	Joints	Requirements
EBW	Nb/Nb	Full penetration only, groove welds 100% VT, 100% X-rays for longitudinal and T seams, 25% circular Ability to weld without RRR degradation of more than 10% shall be demonstrated RRR test specimens: 3x (2x2x100 mm) from the MZ WPQR: ASME BPVC Section IX Part – QW: All welds to be qualified individually, CERN requires 3 1 sample Test extent: 2 tensile + 2 face bend + 2 root bend
	Nb/NbTi	Full penetration only, groove welds. WPQR requirements similar to Nb/Nb 100% VT, 100% X-rays for longitudinal and T seams, 25% circular Remark: T-like joint design shall be avoided
Vacuum brazing	Nb/SS	 § 3.8.6 is clear: filler material shall be high purity copper UNS C10100 only! BPQR: ASME BPVC Section IX: table QB-451.3: 2 tension + 2 peel (sectioning preferred) Additional qualification criterion: thermal shocking in liquid nitrogen CERN requires receiving 3 1 sample (production)

Bare cavities with interfaces: manufacturing

- Highlights:
 - Pressure equipment: full traceability (materials, parts) is critical;
 - Silicone, halogens and sulphur are strictly proscribed;
 - 'Flood' cooling shall be preferred (helps avoiding Nb degradation);
 - CERN's procedure for cleaning and chemical polishing of Nb shall be adopted (annex 6.6);
 - A specific brazing procedure is requested for joining SS/Nb §3.8.6

Bare cavities with interfaces: finalization of the manufacturing process

- Foreseen at the supplier's (US LARP) premises (§3.10):
 - 150 µm BCP according to the procedure of annex 6.6;
 - HT aiming at avoiding hydrogen disease;
 - 15-20 µm light BCP to remove impurities – annex 6.6;
 - High-pressure water rinsing

		PROCEDUR	RE		
		SUPERCONDUCTING			
				200	
Abstract	CHEMI	CAL POLISHING OF N		>300	
performan	ce of the cavity. Th	process of superconducting niobile e present procedure specifies the ts of niobium cavities and of finish	steps to be followed to	l for the good perform a chemic	cal
		TRACEABILIT	Ŷ		
Prepared I	y: N. Valverde (EN		Ŷ	Date: 23/05/20	114
	y: N. Valverde (EN	-MME-FW)	Ŷ	Date: 23/05/20 Date: 26/05/20	
Verified by		-MME-FW) C)	γ		014
Verified by	: L. Ferreira (TE-VS by: O. Capatina (EN	-MME-FW) C)	γ	Date: 26/05/20	014
Verified by Approved	: L. Ferreira (TE-VS by: O. Capatina (EN	-MME-FW) C)	-	Date: 26/05/20 Date: 28/05/20	014
Verified by Approved Distributio	r: L. Ferreira (TE-VS by: O. Capatina (EN n: CERN	-MME-FW) C) I-MME-EDM)	-	Date: 26/05/20 Date: 28/05/20	014
Verified by Approved Distributio Rev. No. 1.0	:: L. Ferreira (TE-VS by: O. Capatina (EN n: CERN Date	-MME-FW) C) I-MME-EDM) Description of Changes (n	najor changes only, min	Date: 26/05/20 Date: 28/05/20	014 014
Verified by Approved Distributio Rev. No. 1.0	r: L. Ferreira (TE-VS by: O. Capatina (EN n: CERN Date 28/05/2014	-MME-FW) C) IMME-EDM) Description of Changes (n First version	najor changes only, min	Date: 26/05/20 Date: 28/05/20	014
Verified by Approved Distributio Rev. No.	r: L. Ferreira (TE-VS by: O. Capatina (EN n: CERN Date 28/05/2014	-MME-FW) C) IMME-EDM) Description of Changes (n First version	najor changes only, min	Date: 26/05/20 Date: 28/05/20	014

Bare cavities with interfaces: verification

- Dimensional checks
 - Also between manufacturing steps (flowchart);
 - Final conformity assessment to the specification drawing;
- NDT of welded joints
 - Nb welds: level B | EN ISO 13919-2 + additional criteria (§4.2.1);
 - Vacuum brazing: channels not accepted, defects area $\leq 5\%$
- Frequency check and tuning
 - Final frequency tolerance within 200 kHz from ideal 3-D model
- He leak tightness: better than 2x10⁻¹¹ Pa.m³/s (2x10⁻¹⁰ mbar.l/s)

Conclusions & future work

- 1. CERN Engineering tools are being proficiently used by the collaboration with good results;
- 2. Sound collaborative work has been developed with the Institutes;
- 3. The architecture of the system allows identifying five entities related to dressed Crab Cavities for SPS tests;
- 4. Version 1. (6/2014) of the Engineering Specification defines the technical requirements and verification measures for the processes of the entity 'bare cavity with interfaces' minor updates expected;
- 5. The next step aims at detailing the entity 'Helium vessel', by adopting the same strategies. Magnetic shielding, tuning system and HOM couplers will follow.

Thank you for your attention

