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Towards quantitative measurements of 2N correlations

How to observe directly  of 3N correlations

Discovering nonnucleonic degrees of freedom in nuclei
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Towards more quantitative studies of 2N correlations

a2 is known from (e,e’) dominance of (pn) SRC is established

How close are a2’s determined using two methods? 

Modeling distortion, 3N effects, contribution of secondary hadron interactions... 
Ultimately - upper limit on non-nucleonic contribution to SRC  : < 10--15%?

Are SRC dominate in the inclusive backward nucleon production 
γ(γ*) A → N+X reaction?   We described inclusive data on backward 
production as sum of scattering of 2N, 3N SRCs. e’ constrains picture 
strongly. More sensitive to relative strength of 2N and 3N  & motion of pair.
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�(↵p, pt, Q
2, ⌫) =

Z
d↵NdptND(↵p, pt,↵N , ptN )�(Q2, s0)

where D is the decay function which was studied in (e,e’pN). Check universality, A dependence 
(secondary interactions of hadrons produced in eN scattering). May try also to look at the forward 
particles produced in the eN scattering (e.g. Delta’s).  Shift of quasielastic peak due to ↵p + ↵N ⇠ 2

Medium/ heavy nuclei two QE peaks - shifted from electron scattering of SRC and 
at standard position from secondary break up of 2N by knocked out nucleon
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First A(e,e’p) experiment with detection of protons in backward hemisphere was 
performed by Kim Egyan’s group in 1986 - previous (e,e’p) experiments measured 
knocked out protons which are emitted forward along q.→

First results: YERPHI-1351-46-91, Jul 1991

Published: Phys.Atom.Nucl.61:207-213,1998,

⇒

PhD of M.Amaryan
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knockout spectator 2N SRC

fsi with intermediate Δ-isobar

Δ-isobar

spectator 2N SRC
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FIG. 4.2: The dominant QCD diagram for the process ⇤ + D ⇤ ⇤� + N + X at fixed x ⇥ 1
3 and � ⇤ 2�X in the 6q model of

the deuteron.

4.1.2. Transitional region

To estimate the deuteron WF in the transitional region

0.5 < k < 1.0 GeV/c,

where two-nucleon system is far o�-energy shell, one has to consider a process which is hard at finite x and which can
be simultaneously described in terms of QCD diagrams and in terms of NN wave function of the deuteron. Recall
that �/2 is the fraction of the deuteron momentum carried by the nucleon in the infinite momentum frame (IMF) of
the deuteron, the so-called light cone fraction.

One of the simplest processes is the deep inelastic reaction:

↵ + D⌅ ↵⇤ + N(�) + X

at average x ⇤ 1
4 �

1
3 and �⌅ 2� x (� = 2� x is the phase space boundary for this reaction). In the calculation we

assume that the fast nucleon (colourless 3q system) is formated before the ⇤⇥ interaction. As a result the scattering
from configurations in the deuteron with finite number of partons (6q configuration) gives dominant contribution due
to finite phase space restrictions.

Under these assumptions the space-time evolution of the process is described by noncovariant diagrams of old-
fashioned perturbation theory in the infinite momentum frame of the deuteron (fig. 4.2)31. In the initial state the
quarks (1,2,3) and (4,5,6) form two nucleons in the average configuration (xqi ⇤ 0.2�0.3). Only hard gluon exchanges
are shown in fig. 4.2. The Coulomb and transverse gluons are labelled as C and T, respectively. For dominant diagrams
C, T gluon exchanges are alternated. Due to the vector coupling selection rule [189] a rather peculiar diagram 4.2
with qq̄ pair emission in the intermediate state gives dominant contribution — other diagrams are suppressed at least
by factor (2� �� x), (cf. the analysis of the nucleon structure function in Appendix C).

Neglecting weak a dependence of the overlapping integral of the 3q system (4,5,6) with the nucleon (see below) we
obtain for the QCD diagram (fig. 4.2)

FD/N
2 (x,Q2,�) ⇤

2���x�

0

d⇥1 d⇥2

⇥1⇥2
⌅(�4� + �5 + �6 + ⇥1 + ⇥2 � 2 + x)

⇥ (
⇥

⇥1

⇥
⇥2)�2(⇥1(1/⇥1 + 1/⇥2)�2)2 ⇤ (2� �� x)3. (4.6)

31 The rules of calculation are the same as in QED [188] because three, four gluon vertices are inessential in the lowest order in strong
coupling constant �s. The rules necessary for the calculation of the asymptotics of QCD diagrams in the limit under consideration are
given in Appendix C
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The factor ⇤ (2� �� x)6 originates from 6 hard energy denominators, factor ⇤ (2� �� x)�2 is due to four gTqq̄
vertices; factor (2 � � � x)�1 is due to phase-space integration. Since the quark 1 which interacts with ⇥⇥ is in the
average configuration, the weak x dependence due to quark soft interactions is not explicitly written here. In the
derivation we neglect the final state interaction between the colourless (4⇤,5,6) system and the quarks (2,3⇤) as in deep
inelastic scattering energy ⇥ 1 GeV is transferred to the struck nucleon (see [1–3] and discussion in section 3 3.3).
The condition that 3q state (quarks 4⇤,5,6) is colourless is necessary also to avoid large gluon bremsstrahlung which
would otherwise suppress the yield of leading particles due to the Sudakov type form factor.

The derived expression is justified for x ⇤ 0.2 � 0.4 and 1.5 � � � 2 � x ⇤ 1.8. The low boundary is determined
from the condition for the energy denominators to be far o⇥ the energy shell. The upper boundary is due to the
condition that no additional hard gluon exchanges are necessary.

The overlapping integrals of 3q systems (1,2,3⇤), (4⇤,5,6) with nucleon can be roughly estimated as F2N(x/(2� �))
and F2N((�� 2

3 )/�), correspondingly, since the leading quark carries a large fraction of nucleon momentum x/(2��),
(� � 2

3 )/�. (Note that the same type estimate is valid for admixture of baryon resonances since quark distribution
at large x has a universal form [128].) It is easy to check that in the discussed � range the overlapping integral for
nucleon with light-cone fraction � rather weakly depends on �. Actually the dependence of this overlapping integral
is even weaker since F2N(x) includes contributions of configurations like 3qg, which decrease faster with x than the
3q contribution.

Neglecting the admixture of baryon resonances in the deuteron WF we can compare eq. (4.6) with the two-nucleon
approximation (section 3) according to which

F2D(x,�) = F2N(x/(2� �))⇤N
D(�, k⌅ = 0). (4.7)

Here ⇤N
D(�, k⌅) is the single nucleon density matrix of the deuteron (for formal definition of ⇤N

D see eq. (2.31)). The
comparison of eqs. (4.6) and (4.7) at x/(2� �) ⇤ 1, where eq. (4.6) is applicable, gives [4–6]

⇤N
D(�, k⌅ = 0) ⇤ (2� �)3 at 1.5 < � < 1.8. (4.8)

The presence of NN⇥ component in the deuteron WF would not a⇥ect eq. (4.8) — in this case ⇤N
D would correspond

to inclusive distribution of nucleons in the deuteron. At small transverse momenta of the nucleon the k⌅ dependence
of ⇤N

D cannot be calculated within perturbative QCD as is determined by the premordial quark distribution in the
initial state. However in the two-nucleon approximation the k⌅ dependence can be reconstructed using the angular
condition (eq. (2.22)).

Eq. (4.8) should be compared with quark counting rules expectations [71, 100] ⇤N
D(�) ⇤ (2� �)6. (Here and below

we give predictions of quark counting rules accounting for QCD selection rules [189].)
Since inclusive cross section of FB nucleon production in h + D ⇧ p + X reaction, � d⌅/d� d2k⌅, is proportional

to ⇤N
D(�, k⌅) [61–63], eq. (4.8) predicts � dependence of this reaction at k⌅ ⌅ 0. Recent high energy data [27] on the

p + D⇧ p + X reaction are consistent with eq. (4.8) and contradict the quark counting rule predictions [71, 100] (see
fig. 3.15).

We would like to emphasize that the derived momentum dependence of deuteron WF and the realistic deuteron
WFs like the Reid, Hamada-Johnston WF practically coincide in a range of nucleon momenta 0.5 < k < 0.8 GeV/c.
Consequently, there exists a smooth transition between non-relativistic and QCD rescription of the deuteron. At the
same time this means that we predict not only the momentum dependence but also the absolute value of cross section
of this process since Hamada-Johnston WF describes the data up to � < 1.7 (see fig. 3.15).

Note, however, that for rare components like q̄ the NN approximation (with ⇤N
D from (4.8)) and QCD perturbation

approach lead to di⇥erent predictions for the semi-inclusive reactions [4–6]

[FD/N
2 (�, x)� xFD/N

3 (�, x)] ⇤ (2� �� x)7 in QCD
⇤ (1� x/(2� �))7(2� �)3 in NN approximation.

Therefore smooth correspondence exists for dominant configuration only. At the same time antiquark distribution in
the deuteron is the same in both approaches.

4.1.3. Estimate of � admixture in the deuteron

Diagram 4.2 describes not only nucleon but also � production at large �. However � production is suppressed
due to flavour combinatorics of “u” and “d” quark interchange and due to zero deuteron isospin. As a result [190]

Structure of  the light cone density matrix.

FS79

In principle one can start from calculating many body LC wave function based on many body bound state 
equation  (involves three body potential to keep rotational invariance satisfied). We use cluster expansion and 
analog of quark counting rules.

How to observe directly  of 3N SRC✺

Note - 3N/2N should grow with nuclear density - important for central region of 
neutron stars where ρ/ρnuc ≳ 2
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the Weinberg type eq. (2.22)). Following the QCD in of section 4 we shall approximate it below by the WF of the
two-nucleon correlation. In the calculation we neglect the Fermi motion of the nucleons in the initial configuration,
i.e. we take �i ⌃ 1, ki⇤ ⌃ 0. Within the approximations the expression for ⌅3(�, k⇤ = 0) is given by

⌅3(�, k⇤ = 0) =
�

d⇥1

⇥1
d2k1⇤

d⇥2

⇥2
d2k2⇤⇤(⇥1 + ⇥2 + �� 3)

⇤ ⇤(k1⇤ + k2⇤ + k⇤)⇧2(2� ⇥1, k1⇤)⇧2

��
2� 2⇥2

�

⇥
, k2⇤

⇥
. (2.41)

Here ⇧ is the WE of a two-nucleon correlation. The additional dependence of the upper blob in fig. 2.8 on ⇥1, ⇥2

can be neglected, since in the essential region of integration ⇥1, ⇥2 ⇧ 0, when � ⇧ 3. Here we use the evident
consequence of eq. (2.19) that the short-range behaviour of the WF is determined by the singularities of the potential
and is independent of the binding energy.

Assuming that ⇧2(2� ⇥1, k⇤)�1⇥0 ⌅ (2� ⇥1)n+1f(k2
⇤) we obtain

⌅3(�, k⇤ = 0) ⌅ (3� �)2n+1. (2.42)

To generalize this result to the case of any j-nucleon correlation at �⇧ j we assume that its WF can he approximated
by the convolution of two-nucleon correlations. Simple calculations lead to:

⌅j(�, k⇤ = 0) ⌅ (j � �)n(j�1)+j�2. (2.43)

The factor (j � �)(1+n)(j�1) is due to j � 1 two-body amplitudes. The factor (j � �)�1 is due to phase volume of
fast nucleon. A similar expression was obtained by Schmidt and Blankenbecler in the case j = A [71]. Now it seems
di⌅cult to calculate absolute value of ⌅j(�, k⇤). To account for inclusive origin of ⌅j(�, k⇤) we assume that

1
j

j�

1

⌅j(�, k⇤)
d�

�
d2k⇤

is independent of j. A violation of the last condition would lead to redefinition of aj in eq. (2.38). The final formula
for ⌅N

A(�, k⇤ = 0) is as follows

⌅N
A(�, k⇤ = 0) =

A⌥

j=2

ajCj

�
1� �� 1

j � 1

⇥n(j�1)+j�2

(2.44)

where ⌅j = ajCj(1� (��1)/(j�1))n(j�1)+j�2. C is practically independent of j and fixed by the condition ⌅2 = ⌅N
D.

In summary:

1. The estimate of ⌅j(�, k⇤ = 0) is in accordance with the Brodsky-Farrar attempt to calculate high momentum
component of hadron WF in terms of quark models [160]. Eq. (2.41) can be obtained more formally by
transforming the many-body equation into a Faddeev type equation [161] and by finding its asymptotic solution.
It follows from this analysis that in eq. (2.41) the region ⇥1 > ⇥2 > · · · > ⇥j�1 mostly contributes. As a result
the invariant mass of the recoiling system is di�erent from the mass of a nucleus with the atomic number j.

2. It seems now that a rather complicated behaviour of ⌅2(�, k⇤) expected for � > 1.8 (see section 4 4.2) does
not influence strongly the form of ⌅N

A (�, k⇤ = 0) because in this kinematic region ⌅2(�, k⇤ = 0) is small and
therefore the three-nucleon correlation dominates (see analysis of experimental data in the section 8 8.1)

3. If � is not large eq. (2.43) can be approximated as

⌅j(�) ⌃ exp
⇤
��(n + 1)

⇧
1� 1

j

�
n + 2
n + 1

� �

2

⇥⌃⌅
.

In other words at � < 1.8 the contributions of two and three-nucleon correlations into ⌅N
A(�, k⇤ = 0) have

similar functional form.

4. It is well that the high momentum behaviour of deuteron WF is dominated by D wave in a large kinematical
region. Therefore the above calculation of ⌅j(�, k⇤) really indicates that contribution of partial waves with
L ⌥= 0 is large in the nuclear WF.
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FIG. 2.8: A typical diagram for the three-nucleon correlation.

k/m ⌃ 1 (i.e. the Schrödinger equation can be directly derived from IMF diagrams). Eq. (2.29) combined with eq.
(2.35) gives a practical possibility to apply existing experience in nuclear physics to estimate short-range phenomena.

For a long time two qualitatively di�erent hypotheses on the high momentum components of nuclear WF have been
discussed. It was suggested that n(k) is determined either by short-range two-nucleon correlations or by the average
field configurations.

The pair correlation hypothesis was proposed in early 1950’s to explain nuclear photodisintegration [154, 155]
absorption of slow pions [156] and it is still successfully applied for description of these and other experiments,
sensitive to the quasideuteron pn configuration with nucleon momenta kp ⇧ �kn � 400MeV/c [120]. The up to date
analysis of photonuclear reactions indicates that contribution of the triplet pn pairs (quasideuterons) to n(k) is given
by n(k) = L · N(Z/A)⇤2

D(k) where L is the Levinger factor 8-10 (see e.g. [120]). After consideration of the singlet
pn and pp pairs in the Wigner-model, this analysis suggests that 25 � 40% (?) of the nucleons in the nucleus have
momenta larger than 300MeV/c.

At the same time one can estimate the high momentum components in the deuteron using the Hamada-Johnstone
or the Reid soft core WF’s which describe well the short-range part of the deuteron WF. We obtain

�
⇤2

D(k)d3k�(k�
0.3 GeV/c) � (4� 5)%. For 4He the calculations performed in [118] with the Reid potential lead to 1

4

�
n(k)d3k�(k�

0.3 GeV/c) � 10%. For heavier nuclei the estimations using gas approximation indicate that the probability of a two
nucleon correlation increases with atomic number A by factor ⌅ 1.5 in the range A = 12 � 207 (see eq. (2.40))14.
Thus the existing experience in the non-relativistic nuclear physics hints that 15�25% of nucleons (not quasiparticles)
have momenta above the Fermi surface of the non-interacting system.

It seems instructive to estimate the value of two-nucleon correlations using the nuclear WF in coordinate space.
Really due to the large value of the D-state for realistic deuteron WFs ⇤D(k) =

�
eikr⇤D(r)d3r for k = 0.4 GeV/c

is determined by integration in coordinate space over a large region near the nuclear core r0 ⌅ 1.2� 1.4fm ⇤ r > rc

(rc ⌅ 0.4fm is the position of nuclear core). Therefore for heavy nuclei the probability a2 of pair correlation is
proportional to the probability for two nucleons to be in a volume of the radius r0; a2 ⇧ (r0/rNN)3. Here rNN is mean
distance between nucleons in nuclei. Taking a realistic value for rNN ⌅ 2fm we obtain a2 ⌅ (10� 20)%. This purely
geometric estimate indicates that:

1. In most of the phenomena related to the high momentum component in the nucleus WF essential relative
distances between nucleons are considerably larger than rc. Therefore overlapping between quarks which belong
to di�erent nucleons is not large.

2. Since a2 is large, three, four-body correlations could not be small.

In di�erence from the pair correlation model in the average field models it is assumed that n(k) is dominated by
the configurations, where the momentum of a fast nucleon-k is balanced by the rest of the nucleus (i.e. the nucleon
configuration p1 = k; p2 ⌅ p3 · · · ⌅ pA ⌅ k/A � 1). This hypothesis has recently been revived by Amado and
Woloshyn [68] in their analysis of the backward nucleon production at initial energies Tp = 600�800MeV. Practically
the same hypothesis was discussed by Blankenbecler and Schmidt in connection to the backward p, ⇥ production at
large energies in the framework of the Bethe-Salpeter light cone formalism [71–73].

At the same time for a realistic NN potential with a core, the contribution of two-nuclec correlations dominates at
k ⌥ . This follows from the large di�erence between the scales of the long-range potential characterizing the depth of
the potential well (⌅ 40MeV), and of the short-range repulsive potential (the value of the barrier is � 0.6 GeV for the
realistic NN potentials). Numerical calculations with realistic potentials [118] indicate that two-nucleon correlations
dominate in n(k) at k ⇤ 0.4� 0.5 GeV/c.

14 Calculations made in [118] for 16O do not show the increase with A of the value of high momentum tail of the nuclear WF as compared
to 4He. Possibly this is due to the restriction [118] to S-waves in the input WF. (One of us (L.F.) is indebted to Dr. W. Glöckle for a
discussion of this point.)
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the Weinberg type eq. (2.22)). Following the QCD in of section 4 we shall approximate it below by the WF of the
two-nucleon correlation. In the calculation we neglect the Fermi motion of the nucleons in the initial configuration,
i.e. we take �i ⌃ 1, ki⇤ ⌃ 0. Within the approximations the expression for ⌅3(�, k⇤ = 0) is given by
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Here ⇧ is the WE of a two-nucleon correlation. The additional dependence of the upper blob in fig. 2.8 on ⇥1, ⇥2

can be neglected, since in the essential region of integration ⇥1, ⇥2 ⇧ 0, when � ⇧ 3. Here we use the evident
consequence of eq. (2.19) that the short-range behaviour of the WF is determined by the singularities of the potential
and is independent of the binding energy.

Assuming that ⇧2(2� ⇥1, k⇤)�1⇥0 ⌅ (2� ⇥1)n+1f(k2
⇤) we obtain

⌅3(�, k⇤ = 0) ⌅ (3� �)2n+1. (2.42)

To generalize this result to the case of any j-nucleon correlation at �⇧ j we assume that its WF can he approximated
by the convolution of two-nucleon correlations. Simple calculations lead to:

⌅j(�, k⇤ = 0) ⌅ (j � �)n(j�1)+j�2. (2.43)

The factor (j � �)(1+n)(j�1) is due to j � 1 two-body amplitudes. The factor (j � �)�1 is due to phase volume of
fast nucleon. A similar expression was obtained by Schmidt and Blankenbecler in the case j = A [71]. Now it seems
di⌅cult to calculate absolute value of ⌅j(�, k⇤). To account for inclusive origin of ⌅j(�, k⇤) we assume that
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where ⌅j = ajCj(1� (��1)/(j�1))n(j�1)+j�2. C is practically independent of j and fixed by the condition ⌅2 = ⌅N
D.

In summary:

1. The estimate of ⌅j(�, k⇤ = 0) is in accordance with the Brodsky-Farrar attempt to calculate high momentum
component of hadron WF in terms of quark models [160]. Eq. (2.41) can be obtained more formally by
transforming the many-body equation into a Faddeev type equation [161] and by finding its asymptotic solution.
It follows from this analysis that in eq. (2.41) the region ⇥1 > ⇥2 > · · · > ⇥j�1 mostly contributes. As a result
the invariant mass of the recoiling system is di�erent from the mass of a nucleus with the atomic number j.

2. It seems now that a rather complicated behaviour of ⌅2(�, k⇤) expected for � > 1.8 (see section 4 4.2) does
not influence strongly the form of ⌅N

A (�, k⇤ = 0) because in this kinematic region ⌅2(�, k⇤ = 0) is small and
therefore the three-nucleon correlation dominates (see analysis of experimental data in the section 8 8.1)

3. If � is not large eq. (2.43) can be approximated as
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In other words at � < 1.8 the contributions of two and three-nucleon correlations into ⌅N
A(�, k⇤ = 0) have

similar functional form.

4. It is well that the high momentum behaviour of deuteron WF is dominated by D wave in a large kinematical
region. Therefore the above calculation of ⌅j(�, k⇤) really indicates that contribution of partial waves with
L ⌥= 0 is large in the nuclear WF.
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FIG. 6.1: Production of a fast backward nucleon in the W � scattering from the two-nucleon correlation spectator mechanism.

function ⇧̃N
A(�, k⌅,M2

Rec). One can in particular investigate the increase with x of the average number of fast forward
nucleons which balance the momentum of struck nucleon. However the cross section of this reaction is rather low and
the final state interaction between forward going nucleons could be essential.

Therefore it seems much more feasible to use as a trigger the presence of a fast nucleon (pN > 0.3 GeV/c) in
the backward (relative to ⇥�, W �) hemisphere. This selection enhances the contribution of short range correlations,
because such protons cannot be produced in a collision of a free nucleon or in the nucleus evaporation. (In fact the
data on such reaction were accumulated as byproduct on the DST of all big neutrino bubble chambers for a long time.
First analysis of such data was undertaken recently by Fermilab-ITEP-IHEP-Michigan collaboration in FNAL [22, 23]
and SCAT collaboration in Serpukhov [24].) An evident advantage of using a leptonic probe (instead of hadronic one)
is that the lepton provides a rather direct information about the struck nucleon momentum. At the same time the
study of the final state gives information about the structure of correlation. (Therefore in a certain sense reaction
(6.1) is more close to low energy eA ⌃ e⇤ + p + p + X reactions discussed e.g. in [203, 210] than to eA ⌃ e⇤ + p + X
reactions.)

A natural mechanism for reaction (6.1) is the following: ⇥�, W � strikes one of the nucleons of the correlated system,
which has a forward momentum in the nucleus rest frame releasing the backward going nucleon from the correlation
(see fig. 6.1). Before starting a formal derivation let us consider what one should expect if reaction (6.1) is dominated
by the scattering o� the pair correlation. In this case large � of the backward nucleon40 is balanced by �⇤ ⇧ 2� � of
the struck nucleon. Consequently the average light cone momentum carried by the quarks of the balancing nucleon is
2�� times smaller than for the average nucleon with � ⌅ 1. Therefore the mean x for events with backward nucleon
should be smaller than in the average case:

⌥x�� = (2� x)⌥x�. (6.2)

The decrease of ⌥x�� was first predicted in [31] and it is observed now in two experiments [22–24].

6.1. The basic formulae

To describe the reaction (6.1) quantitatively it is necessary to introduce the production function
⇧N1N2
A (�1, k1⌅,�2, k2⌅). By definition ⇧N1N2

A (�1, k1⌅, �2, k2⌅)/⇧N2
A (�2, k2⌅) is the probability for a nucleon N1 to

be produced if a nucleon N2 is instantaneously removed from the nucleus. In principle ⇧N1N2
A can be calculated by

solving the many-body Weinberg type equation for the nuclear WF and decomposing the WF of the recoiling system
over the free particle states (nucleons, nucleus fragments). This procedure is analogous to that used for the calculation
of the nuclear spectral function.

It is important that the removal of a nucleon from the nucleus in the reaction (6.1) can well be considered as
instantaneous because the energy transfer to the target nucleon in ⇤N scattering is large at any x. Thus, the spectator
contribution to the cross section of the reaction (6.1) is given by eq. (6.3) (cf. equations for the ✓ + D ⌃ ✓⇤ + p + X
reaction in section 3 3.3) which is really a particular case of the sudden approximation:
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40 In the nucleus lab. frame � = ( m2 + p2 � (pq)/|q|)/mN, where p is the lab. frame nucleon momentum. Large � > 1 corresponds to
backward going nucleon in the nucleus rest frame.
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FIG. 7.1: Production of fast backward spectators in hA collision.

In the case of nucleon production, we impose also the condition pN > 0.3 GeV/c, to avoid any significant contribution
of nucleon evaporation. To simplify the presentation, we shall use, for a while the two-nucleon (pair) correlation
approximation for the nuclear WF (see section 2 2.4).

At large incident energy, the average energy transfer to each of the ⇤ inelasticly interacting nucleons is of the
order 0.5 GeV (the same as in the elementary hN inelastic interaction). Similar to the deuteron case this energy is
su⌅cient to destroy all pair correlations associated with any of ⇤ nucleons, i.e. the incident hadron h going through
the nucleus knocks out nucleons moving forward (in the nucleus rest frame) releasing backward moving nucleons of
the pair correlations (see fig. 7.1). Similarly to the case of deuteron stripping it is natural to call this process a
spectator mechanism [69, 70]. In the approximation of the pair correlation matrix the probability to find a nucleon
with momentum pN(�, p�), correlated with a given nucleon is equal to (1/A)⌅N

A(�, p�). (Cf. eq. (2.38). Recall that
⌅N
A(�, p�) is the single nucleon density of the nucleus in the momentum space.) Therefore using eq. (7.3) we obtain

[106–110]42

GA/N
h (�, p�) =

A�

n=1

1
A

⌅N
A(�, p�)n⇧n = ⇧hN

in ⌅N
A(�, p�) (7.5)

since the nucleon can be emitted in each of the n collisions.
Eq. (7.5) is quite similar to the impulse approximation. This is so because we neglected in the derivation that the

spectator could have had the same impact parameter as the projectile and, thus, would lose its � due to inelastic
interactions with the incoming hadron. Taking into account this possibility, we are lead, similarly, to the deuteron
case (section 2 2.5), to the Glauber screening factor ⇥h in eq. (7.5)

GA/N
h (�, p�) = ⇥hA⇧hN

in ⌅N
A(�, p�). (7.6)

The inclusion of j-nucleon correlations with j > 2 may modify eq. (7.6). In this case, ⇥h will depend on �, as the
e⌅ciencies of breaking 2- and 3-nucleon correlations are somewhat di�erent (cf. eq. (7.10)). Consequently, in a wide
region, GA/N

h (�, p�) is proportional to ⌅N
A(�, p�) and therefore measurement of GA/N

h provides a direct information
about the nuclear WF.

We explained in section 2 2.5 that �, p� dependence of ⌅N
A varies slowly with A. Thus, it follows from eq. (7.6)

that GA/N
h (�, p�) should universally depend on A, �, p� for di�erent projectiles. In particular the following universal

relationship is valid

GA1/N
h1

(�, p�)/GA1/N
h2

(�, p�) = GA2/N
h1

(�, p�)/GA2/N
h2

(�, p�). (7.7)

One should not be confused by the resemblance of the form (7.5) with the impulse approximation. It reflects merely
the inclusive nature of the reaction (7.4): not one but several target nucleons participate in the collision and are
knocked forward in each hA collision. To illustrate this point, we calculate GA/(N1+N2)

h – inclusive cross section for
production of two FB nucleons which is equal zero in the impulse approximation, provided only scattering from pair

42 Gb/c
a (x, p⇥) � x d�a+b�c+X/dx d2p⇥ is the inclusive cross section of the reaction a + b⇥ c + X.

Production of a fast backward 
nucleon in the pA scattering

dσh+A→N+X

dαd2pt

α

= κhAσhN
in ρN

A (α, pt)

where  factor             accounts for local screening effects κh

G
A/N
h (α, pt) ≡

10

x -- α correlation observed  for neutrino scattering off Ne (CERN and FNAL)
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FIG. 8.2: Comparison of the FB nucleon yields from 4He and D. The experimental points from [27, 38, 39] illustrate precocious
limiting fragmentation for p+4 He⇥ p+X reaction. Dot-dashed curve for 4He is the calculation in the two-nucleon correlation
approximation which uses as input n(k) from [118]. The shaded region is the calculation with inclusion of three-nucleon
correlations described in the text.

FIG. 8.3: The ratio of the di�erential cross sections per nucleon for the p+A⇥ p+X reaction (A1 = Ta, A2 = C) for di�erent
emission angles. The experimental data are from 400 GeV measurement for 70 � � � 160� [35, 36] and 9 GeV measurement
for � = 180� [33, 34].

demonstrate that universality is valid practically in all backward hemisphere at � ⇤ 1.2. For example the ratio

R(pN, Ta, C) =
1

ATa
GTa/P

p (pN)
�

1
Ac

GC/P
p (pN)

does not change more than by a factor ⌅ 2 (fig. 8.3) while the cross sections decrease by a factor 2 ⇥ 104! (see figs.
8.4(a), 8.4(b)). (The data [33–36] indicate some small increase of the ratio R(pN,Ta, C) and also R(pN,Ta,6 Li) in the
region � � 2.2 though in the region 1.2 < � < 2.2 the ratio is constant within experimental accuracy.)

At small nucleon momenta (pN ⌅ 0.4 GeV/c) GA/N
a rather weakly depends on the emission angle ⇥, though with

increase of pN the spectrum becomes strongly anisotropic (figs. 8.4(a), 8.4(b)).
To compare the data obtained using di�erent targets and projectile it is convenient to fit GA/N

a (pN) in the form

GA/N
a (pN) = Ca exp{�T/T0(⇥)} ⇧ Ca exp{�B(⇥)p2}

which reasonably describes the data (especially exp(�T/T0) fit) up to pN ⌅ 1 GeV/c (as usually T is kinetic energy
of the FB nucleon).
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(a) (b)

FIG. 8.4: Comparison of the FNC model with the 400 GeV data [35, 36].

FIG. 8.5: The dependence of the slope parameter B on the incident energy for di�erent targets [31, 40, 41].

Comparison of the data [31, 32, 40, 41] indicates that the slope parameter B(⇥) does not depend on A, on the
projectile (�, ⌅, p and even ⇤, ⇤̄) and its energy with accuracy < 10% (see, e.g. fig. 8.5). B(⇥) does not change also
if events with fixed number of FB nucleons (2, 3, 4) are selected [228, 229].

There are some indications of irregularities in the momentum shape of GA/N
h : a bump was observed in n, ⌅�+C�

p + X reactions at pN = 0.4 GeV/c (pn = 7 GeV/c, p�� = 4 GeV/c) and in p +D� p+ X reaction at pN = 0.35 GeV
[230] (EN = 1 GeV); in D(p) + Pb � p + X collisions a minimum was observed at 150⇥ (170⇥) [231] in the angular

12
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of the correlated nucleons by energetic projectile was suggested in [5] as a spectator
mechanism for production of nucleons in the reaction of Eq.(4). It was experimentally
confirmed in high momentum transfer triple coincidence A(p, 2p, N)X experiment[15,
16] in which clear correlation between pin and pr was observed.

Therefore already this example demonstrates that moving from spectral to decay
function we obtain an additional tool for probing SRCs, such as correlation between
initial and recoil nucleon momenta.

Another advantage of decay function is the possibility to isolate three-nucleon
correlations and probe their different dynamical aspects. Fig8 shows the dependence
of decay function on the relative angle of recoil nucleon momentum with respect to
pin and recoil nuclear energy for pin, pr ≥ 400 MeV/c.
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Figure 8: Dependence of the decay function on the residual nuclei energy and relative
angle of struck proton and recoil nucleon. Figure (a) neutron is recoiling against
proton, (b) proton is recoiling against proton. Inital momentum of the struck nucleon
as well as recoil nucleom momenta is restricted to pin, pr ≥ 400 MeV/c.

Fig.8 shows a rather extensive possibiliteis to isolate 2N and 3N correlations vary-
ing recoil energy of the reaction. In the calculation presented above the threshould

for type 2N-I SRCs (Fig.4(a)) will be ∼ p2
in,min

2mN
≈ 80 MeV, while for type 3N-I SRCs

(Fig.6) the threshold for recoil energies is twice as large. Upper left side of the figure
demonstrates how type 2N-I SRC evoles to type 3N-I SRC with recoil nucleon being
spectator in correlations. The figure also shows who with an increase or recoil energy
type 3N-II correlations start to dominate. The important signature in this case is the

18

Evidence from NR calculations?  3N SRC can be seen in the structure of decay of 3He 
(Sarsgian et al).
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relative angle of the recoil nucleon emission being close to 1200 that characterized
type 3N-II SRCs. The lower right part of the figure shows also different realization
of 3N-I SRCs in which both struck and recoiled nucleons are spectator with the third
nucleon which has roughly twice the momentum of pin or pr.
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Figure 9: Recoil energy dependence of the ratio of decay function calculated for the
case of struck and recoil nucleons being both protons to the decay function for the
case of struck proton and recoil neutron. Both initial momentum of struck and recoil
nucleons is set to be larger than 400 MeV/c. Also the relative angle between inital
and recoil nucleons is restricter to 180 ≤ θr ≥ 1700

Fig.8(a) and (b) corresponds to situation in which struck-proton is detected with
recoil neutron or proton respectively. Comparison of these two cases shows (see
upper left part of the graph) that in type 2N-I SRCs pn correlation dominates the pp
by factor of ten. This feature reflects the dominance of tensor interaction in S = 1,
T = 0 channel of NN interaction at short distances and was confirmed experimentaly,
both for hadron- and electon- induced triple coincidence reactions on carbon[17, 18].
Interesting consequence of the onset of 3N SRCs is that these two rates become
practically equal once recoil energy increases. More detailed view of relative strenght
of pp and pn decay function is given in Fig.9 which demonstrates this trend clearly
which can be considered as an unambigeous indication of the dominance of type 3N-I
SRC effects.

As it was mentioned before formulation of the decay function can be extended to
the situations in which more than two nucleons are detected in the products of the

19

Recoil energy dependence of the ratio of decay function calculated for the 
case of struck and recoil nucleons - ps & pr for struck proton and recoil 
proton and neutron for ps & pr > 400MeV/c &   180o > θ(ps  pr) > 170o

Jlab e,epN
experiment

3N SRC
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Evidence for 3N correlations from the scaling of ratios observed in A(e,e’) 
for x >2  starting with 4He/3He  analysis in FS 88

(i)  α < 2 in the discussed kinematics - selection of small recoil masses for relatively modest 
momenta

Warnings: 

(ii)  W in (e -- 3N) interaction at x > 2 and studied Q range is rather close to the threshold  - hence f.s.i. is 
likely to be important for absolute (e,e’) cross section (less so for ratios)

15



Correlations in p A→ p (backward) + p (backward) +X
measurements of Bayukov et al 86

�i = 120o

�i

16



R2 =
1

�in
pA

d�(p + A� pp + X)/d3p1d3p2

d�(p + A� p + X)/d3p1d�(p + A� p + X)/d3p2

We can reasonably reproduce the pattern of ψ dependence of R2 as due to 
correlated contributions of scattering off 3N SRC and uncorrelated term due to 
scattering of spacially separated 2N SRC. 

pBe

pU
|p1| = |p2| � 500MeV/c

Curves are experimental fit.

17

much more 
than

projectile direction
p

p

p
p

ψ dependence of R2 for (virtual) photons - should be at least as pronounced. Would be 
interesting to look at such correlation already for p > 300 MeV/c. Also study a shift of 
quasielastic peak for 2p events: ↵p 1 + ↵p 2 + ↵N ⇠ 3



Discovering nonnucleonic degrees of freedom in nuclei

Expectations 

pionic component is small due to chrial symmetry 

closest inelastic intermediate state is Δ- isobar - due to strong attraction
 potential enhancement as compared to a naive estimate

non-nucleonic degrees of freedom are predominantly in SRC

< 10- 15 % of SRC

⬇
< 2 - 3 %  per nucleon

❖

❖

❖
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Intermediate states with Δ -isobars.

Often hidden in the potential.  Probably OK for calculation of the  energy binding,  energy 
levels.  However wrong for  high Q2 probes.

Explicit calculations of B.Wiringa -  ~1/2 high momentum component  is due to
   ΔN correlations, significant also ΔΔ . Tricky part - match with observables - 
momentum of   Δ in the wf and initial state

Large Δ admixture in high momentum component  

⇐
Suppression of NN correlations in kinematics of BNL experiment☛

☛ Presence of large ER tail (~ 300 MeV) in the spectral function  

A new quantity to provide even cleaner test of the structure of SRCs- nuclear decay function (FS 77-88) - probability to emit a nucleon with momentum k2  after removal of a fast nucleon with momentum k1, leading to a state with excitation energy Er nonrelativistic definition

Studies of the spectral and decay function of 3He reveal both two nucleon and three nucleon correlations - Sargsian et al 2004

For 2N SRC  can model decay function as decay of a NN pair moving in mean field (like for spectral function  PA)                 Piasetzky et al 06

 Instantaneous removal of one nucleon of 2N SRC leads to release of the second nucleon of SRC with initial momentum (more precisely light cone  fraction and transverse momentum) due to a large difference between the scale of local NN potential and interaction with the rest of the nucleons

☝
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I do not discuss N*’s but they 
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Generic feature: distribution of  ΔΔ over relative momenta in the deuteron 
wave function  is broad . 

1

2E� �md
=

1

2
p
m2

� + k2 �md

Reason: the energy denominator in difference from NN state  is practically constant  up to k ~ mΔ/2


m2

� + k2t
↵(2� ↵)

�m2
d

��1

The same in the light cone formalism

α/2 is the light-cone fraction carried by isobar

Since difference is large  small sensitivity to change of  α:  change of 
α from 1 to 1.3:  α(2-α) --- 1  to 0.91   
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ΔΔ is off shell by huge factor on nuclear scale ~ 600 MeV. Need relativistic 
framework. Difficult with virtual particles - need   violates symmetry between the 
particles. One obtained PΔΔ  up to 6%

More recent quantum mechanics  estimates  on the scale of a fraction of %.
3He - 1% (ΔNN)

LC  consideration of energy denominators - if  | α - 1| > 0.3 the ratio of  Δ and N 
yield for the same  α is a weak function of α. A simple minded quark exchange 
(FS80): Δ/N ~ 1/7

Starting from  nonrelativistic QM description it is possible to establish relation between LC 
and nonrelativistic wf’s in the case of D= NN + Δ Δ
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Z
Ψ2
NN

✓
m2+ k2t
α(2�α)

◆
dαd2kt
α(2�α)

= 1

Spin zero /unpolarized case

Relation between LC and NR wf.∫
φ2(k)d3k = 1

Ψ2

NN

(

m2 + k2
t

α(2 − α)

)

=
φ2(k)

√

(m2 + k2)

Similarly for the spin 1 case we have two invariant vertices as in NR theory:

 hence there is a simple connection to the S- and D- wave NR WF of D

16

for a fixed number of particles within Foldy’s approach. In contrast to [101] we consider eq. (2.20) as an approximate
equation, valid for the deuteron WF due to the small value of inelasticities only, and, observe, that the form of eq.
(2.22) for the deuteron WF is unambiguously determined by the physical approximations discussed above. Eq. (2.20)
coincides with the light cone form of the quasipotential equation [142]. However in this approach the angular condition
restrictions have not been imposed. Thus, in ref. [142] eq. (2.22) has not been obtained.

2.3.2. Properties of the light cone WF of the deuteron

1. Due to the rotational invariance in the transverse plane ⌅D(�, k⇥) = ⌅D(�, k2
⇥).

2. In the two-nucleon approximation for the deuteron WF due to antisymmetry ⌅D(�, k⇥) = �⌅D(2� �, k⇥).

3. Within the two-nucleon approximation due to the angular condition ⌅D(�, k⇥) = ⌅D(k2), see the discussion
above.

4. Account of the deuteron and nucleon spins. The form of the IMF deuteron WF follows from the space parity
conservation and from the condition that the two nucleon system has the total angular momentum equal to 1:

⌅D
µ ⇧D

µ = Ū(p1){⇥µ�1(M2
NN) + (p1 � p2)µ�2(M2

NN)}U(�p2)⇧D
µ . (2.23)

Here p1 and p2 are the momenta of the proton and of the neutron. M2
NN = 4(m2 + k2

⇥)/{�(2 � �)} is the invariant
mass of two nucleon system. ⇧D

µ is the deuteron polarization vector. Evidently, eq. (2.23) is a direct generalization of
the ⇥� WF considered in section 2 2.1.

In the case of the longitudinal deuteron polarization, due to the increase of the components of the vector ⇧D
µ with

the deuteron momentum, energy non-conservation in the vertex D⇥ NN requires special treatment. As a result it is
necessary to account for the terms of the order 1/P in the spin structure of the vertex D ⇥ NN (really the vacuum
pairs in the deuteron WF). If the contact terms in the high energy scattering amplitude are absent the contribution of
the longitudional deuteron polarization can be calculated from the physical requirement that the deuteron is mostly
formed long before the moment of the interaction. Consequently, the conservation of the angular momentum leads
to a constraint on the light cone WF of deuteron that the two nucleon system has angular momentum equal to 1.
Therefore

⇧D
L = {(p1 + p2)z, (p1 + p2)0}/MNN. (2.24)

Eq. (2.24) enables to separate e⇥ects of the nucleon inner motion in the deuteron. In the deuteron rest frame the
constraint due to angular momentum conservation is simplified and the vector ⇧D

L coincides with ez. Eq. (2.24)
naturally arises in the dispersion approach since in this case the “mass” of the deuteron is equal to the mass of the
two nucleon system.

In the case of ⇥� eqs. (2.23, 2.24) are not valid for the longitudinal polarization of ⇥� as the point-like nature of ⇥
allows small longitudinal distances. The method to reconstruct this amplitude was suggested by Gribov [125].

For applications it is convenient to express ⌅D through the two-component spinors ⌃ in two-nucleon rest frame,
and the S- and D-wave functions of deuteron, U(k2), W (k2), which are solutions of eq. (2.22)

⌅D = ⌃�
⌥

⇤µU(k2)� W (k2)⌃
2

�
⇤µ �

3kµ(⇤k)
k2

⇥�
⌃. (2.25)

Here M2
NN = 4(m2 + k2), 1

3

 
|⌅D|2 = U2 + W 2 the sum goes over nucleon, deuteron spin states. It is convenient to

normalize these WF as
↵

1
3

⌦
|⌅2

D|d3k =
↵

[U2(k) + W 2(k)]d3k = 1. (2.26)

Comparing eqs. (2.23) and (2.25) and using the standard formulae

U(k) =
⌃

⇧ + m

⇤
1

⇤k/(⇧ + m)

⌅
⌃, U(�k) =

⌃
⇧ + m

⇤
⇤k/(⇧ + m)

1

⌅
⌃

which express Dirac-spinors through two-component spinors ⌃, we obtain:

�1(M2) =
1⌃
⇧

⇧
U(k)� W (k)⌃

2

⌃
(2.27)
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Looking for non-nucleonic degrees of freedom ( a sample of processes)

electron beams - SDIS - Advantage - cross section for e Δ can be estimated with a 
reasonable accuracy

p is target rest frame momentum of isobar

α=1, pt=0 corresponds to p3 ~ 300 MeV/c forward

Competing mechanism  - Δ’s from nucleons=direct mechanism

↵� =

p
m2

� + p2 � p3
md/2

spectator
 mechanism

�(e2H ! e+�+X) = �(x0 =
x

(2� ↵)
, Q2)

 2
��(↵, kt)

(2� ↵)
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For scattering of stationary nucleon

↵� < 1� x

xF =
↵�

1� x

Also there is strong suppression for production of slow  Δ’s - larger x stronger suppression

�eN!e+�+X / (1� xF )
n
, n � 1

Numerical estimate for PΔΔ  =0.4%

Tests possible to exclude rescattering mechanism: πN→Δ FS90

For the deuteron one can reach sensitivity better than 0.1 % for  ΔΔ especially with quark tagging  (FS 80-90)
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for x> 0.1 very strong suppression of two step mechanisms  (FS80)

is confirmed by neutrino study of  Δ-isobar production off deuteron  

Best limit on probability  of Δ++Δ-  component in the deuteron  < 0.2%
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As a quasi-free particle, it is supposed to absorb a mo- 

mentum of about 300 MeV/c from the neutrino inter- 

action. The plr + effective mass distributions are shown 

in fig. 1 for two intervals of the combined prr + mo- 

N 
so 

z~(1236) 

. v a)  

< P~; ~oo .~v,c 

o 
1200 Mp m 1500 

[ MeV/c2I 

i L00 < Pr, n ( 800 NeV/c ,oo  
1200 [ Mprt 1500 I MeV/c2I 

50 ~ ~ c) 
• 0 < Pp~< 400 MeV/c 

N 

100 

N 

100 

N 

50 

1200 Mp~ 

400 ( 

1500 [MeWc#l 

d)  

P~ < 800 MeV/c 

1200 [ Mprt 1500 [ MeV/c2 ] 

Fig. 1. Effective mass  distr ibutions o f  wr + combinat ions  for 

u (top) and 5 (bo t tom)  interactions.  The distr ibutions are pre- 

sented for two intervals of  the  combined per ÷ m o m e n t u m :  0 -  

400 and 4 0 0 - 8 0 0  MeV/c. The chosen bin size is 30 MeV]c :2 

= _r(1235)/4. The solid lines show the calculated background 

of  combinat ions  of  a pion with a spectator proton.  The 

do t ted  lines show p rompt  p~r + product ion as obtained from 

v/~-hydrogen data. 

mentum, 0 -400  MeV/c and 400-800 MeV/c. The 

delta spectators should appear only in the first inter- 

val. 

3. Background. Three sources of background to 

the possible delta spectator signal should be taken in- 

to account: 

(1) A++(1236) resonances produced in u/9-proton 

interactions. 

(2) Accidental combinations of positive pions pro- 

duced in u/P-neutron interactions and spectator pro- 

tons. 

(3) Combinations of positive pions and protons, 

where at least one of the particles emerges from a re- 

scattering reaction (secondary vertex) inside the deu- 

teron. 

All sources of background specifically occur in the 

odd-prong event sample. The background evaluation 

which is discussed in more detail in ref. [6], proceeds 

as follows: 

(1) Effective mass values of prr + combinations 

were obtained from the proton events of the ABCMO 

u/P-hydrogen experiment [7] which uses a neutrino 

beam with similar characteristics. The events were 

transformed to account for the Fermi motion of the 

target particle and normalized to the number of pro- 

ton events in deuterium. A weight factor was applied 

to account for the different flux and beam energy as 

experienced by the moving target particle in its rest 

frame. The calculated background is shown as dashed 

curves in fig. 1. It is very small and has little structure 

in the momentum intervals under investigation. Copi- 

ous production of delta resonances in neutrino-pro- 

ton interactions proceeds at higher p~r + momenta. 

(2) The combinatorial background was estimated 

by combining spectators with positive pions produced 

in spectatofless neutron events (even prongs). Since 

spectators emitted in the forward direction of the in- 

teraction cannot be distinguished from protons of 

other sources, a special method was applied to con- 

struct a spectator sample. The sample contained all 

measured backward spectators. Moreover, it con- 

tained a forward spectator derived from each back- 

ward one. The forward spectators were weighted in 

order to account for the difference in beam flux and 

energy as observed by forward and backward moving 

targets. The result of the calculation is automatically 

normalized to the number of events, it is shown as 

solid curves in fig. 1. 
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An analysis has been made of 15 400 v-d interactions in order to find a A++(1236)--A-(1236) structure of the deuteron. 
An upper limit of 0.2% at 90% CL is set to the probability of finding the deuteron in such a state. 

1. I n t r o d u c t i o n .  It has been suggested that the 

deuteron, part of  its time, exists in a state of  two 

A(1236) resonances [1]. If the probability for this 

state is G, the deuteron should be found with equal 

probabilities G/ 2  in the states A++--A- and A+--A 0 

due to isospin symmetry. The first state can be easily 

detected in a bubble chamber, since it would yield a 

A++(1236) spectator particle in high-energy particle- 

induced reactions on the A - .  A slow proton and a 

slow positive pion would result as decay particles. In- 

vestigations have been performed in various experi- 

ments, yielding generally values of  G below 1% [2,3] 

which is in agreement with a theoretical estimate [4]. 

In all these experiments hadrons were used as incident 

particles. In this letter we use data from a u and 9 ex- 

periment. Neutrinos would interact with a valence 

quark o f  the A -  in a A--A deuteron, leaving a A ++ 

spectator. Antineutrinos would interact with the val- 

ence quarks of  the A++, leaving a A -  spectator that 

cannot be detected in our experiment. The antineu- 

1 Present address: Dipartimento di Fisica, Universith di 
Padova, 1-35131 Padua, Italy. 
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trino data mainly serve as a cross check in the present 

analysis. All A ++ spectators are expected to be found 

in the odd-prong sample of  the experiment. 

2. E x p e r i m e n t a l  analysis.  The experiment was per- 

formed with the bubble chamber BEBC exposed to 

neutrino and antineutrino beams from the CERN SPS 

accelerator. The primary proton energy was 400 GeV. 

Details of the experiment have been given elsewhere 

[5]. For the present study 15 400 neutrino and 11 300 

antineutrino charged-current events were selected by 

requiring a detection of  the secondary muon in both 

layers of  the external muon identifier (EMI). Only 

events with a muon momentum above 4 GeV/c were 

accepted; no other cuts were applied on the sample. 

All protons and pions selected from the final states 

were identified on the scanning table by means of  

bubble density and endpoint characteristics. 

Effective mass distributions of  prr + combinations 

were obtained from the odd-prong neutrino and anti- 

neutrino subsamples, consisting of  8570 and 8500 

events respectively. The A++ spectator must reach its 

mass shell, before becoming visible in the chamber. 

0370-2693/86/$ 03.50 © Elsevier Science Publishers B.V. 

(North-Holland Physics Publishing Division) 
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Is there a positive  evidence for Δ’s in nuclei?

Indications from DESY AGRUS  data (1990) on electron 
- air scattering at Ee=5 GeV (Degtyarenko et al). 

Measured Δ++/p, Δ0/p  for the same light cone fraction alpha.

�(e + A⇥ �0 + X)
�(e + A⇥ �++ + X)

= 0.93± 0.2± 0.3

�(e + A⇤ �++ + X)
�(e + A⇤ p + X)

= (4.5 ± 0.6 ± 1.5) · 10�2

It seems that  there are data in the  CLAS archive to do this much better.
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A new quantity to provide even cleaner test of the structure of SRCs- nuclear decay function (FS 77-88) - probability to emit a nucleon with momentum k2  after removal of a fast nucleon with momentum k1, leading to a state with excitation energy Er nonrelativistic definition

Studies of the spectral and decay function of 3He reveal both two nucleon and three nucleon correlations - Sargsian et al 2004

For 2N SRC  can model decay function as decay of a NN pair moving in mean field (like for spectral function  PA)                 Piasetzky et al 06

 Instantaneous removal of one nucleon of 2N SRC leads to release of the second nucleon of SRC with initial momentum (more precisely light cone  fraction and transverse momentum) due to a large difference between the scale of local NN potential and interaction with the rest of the nucleons

☝
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Use 3He(e,e’ppn)

reactions to 
study pn, pp and 
ppn correlations.

Remember:
structure (though not 

probability) of 2N and 
3N correlations is very 

similar in A=3 and 
heavy nuclei

Spectator 
is released

Emission of FB 
nucleon is strongly 
suppressed due to 
FSI

DA(k2,k1,Er)=|⇥⇥A�1(k2,...)|�(HA�1�Er)a(k1)|⇤A⇤|
2

☝

Sufficiently large Q are necessary to suppress two step processes where  Δ++   isobar is produced  via 
charge exchange.  Can regulate by selecting different x -  rescatterings are centered at x=1. 

Semiexclusive approaches toSearching/discovering baryonic nonnucleonic 
degrees of freedom in nuclei

Knockout of    Δ++ isobar in  e+2H! e+ f orward Δ++ + slow Δ�

e+2H! e+ f orward N+ slow N⇤

(a)

(c)

e+3He! e+ f orward Δ++ + slow nn

Searching/discovering mesonic degrees of freedom in nuclei

e+2H! e+ f orward π�(along~q)+ p( f orward) + p( f orward)
pN ⇠ 0.3�0.4 GeV/c FS 77

☝

(b) Looking for slow (spectator)  Δ’s in exclusive processes  with 3He

Another possibility for 12 GeV, study   of  xF  ≥0.5 production of Δ- isobars  in  e+D(A)→e+ Δ +X. For the 

deuteron one can reach sensitivity better than 0.1 % for  ΔΔ especially with quark tagging  (FS 80-89)
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Conclusions 

Observation of ΔΔ on .2 % level seems possible, but one needs to find optimal 
kinematics to reduce combinatoric background.  Preliminary step - study acceptance of 
CLAS to slow Delta’s.   For semiinclusive and exclusive channels are worth exploring.

For heavier nuclei  looking for forward Δ++ knockout at Q2 > 1.5 ÷ 2 GeV2. and 
for control Δ0  (or even better Δ- ) which  should be much smaller  than  Δ++ .

Deuteron is the stepping stone - allows to normalize production of Δ’s off heavier 
nuclei.

Opportunities   for study of two nucleon short-range correlations with backward 
nucleon in e+A → e +backward proton + X starting at low Q2. Need to 
strengthen studies of f.s.i. like production of pions with secondary interactions off 
SRC.

Two backward protons - promising way   for study of three nucleon short-range 
correlations in nuclei
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