Progress of a charge breeder for HIE-ISOLDE and TSR@ISOLDE

Andrey Shornikov

Andrey Shornikov Hadron Sources and Linacs section Beams department

1

Re-acceleration branch – need to breed charges

Re-acceleration branch of ISOLDE. CB makes ions suitable for linac A high performance breeder makes any ion a "light ion" for linac

What is out there?

Bubble size represents electron current rep - reported, est - estimated, * - in commissioning phase + - discontinued

HEC² joint project by CERN and BNL

High Energy Current and Compression (HEC²) electron beam for charge breeding

01-06.2013 manufacturing phase

And test it at BNL

TestEBIS - the cradle of all 4 highest current EBISes ever built

Jun-Aug 2013 HEC² moved to BNL, assembled, preparations of the Test EBIS started Oct-Nov 2013 – first run with HEC2

Where we are on the map?

Bubble size represents electron current rep - reported, est - estimated, * - in commissioning phase + - discontinued

Follow up of the first run - Higher current, first HCI

Max current ramped to 1.7 A, still limited by loss current

courtesy E. Beebe

lons extracted, O^{6+}/O^{5+} and C^{5+}/C^{4+} give too big error bars to define J_e

Limiting factor – 20 mA on the anode

 \Box 20 mA = 2% losses, too high for an EBIS.

20 mA x 12 kV = 240 W heating on the anode, too high for high duty factor and good vacuum.

□ In experiment – 20 mA trips the power supply.

Where 20 mA come from?

Where 20 mA come from?

How do we know?

Back from where, who they are

Backscattered electrons from collector?

Elastically reflected paraxial electrons?

courtesy R. Mertzig

Magnetic bottle stops bad electrons

Tandem Mirror eXperiment (TMX 1979) Lawrence Livermore National Lab

Mirror ratio

Reflection condition

$$\frac{v_{\perp}}{v_{\parallel}} = \frac{1}{\sqrt{R}}$$

Where bad electrons come from?

courtesy R. Mertzig

General approach to suppress this effect

- A. Reduce mirror ratio, keeping current density
- B. Increase electrostatic compression
- C. Reduce low-quality beam component

Requirements

- A: Increase injection magnetic field
- B: precise control of the gun geometry, low aberations
- C: Passivate side surfaces (workaround use focusing electrode)

Actions taken

A: ramp injection field – 300 A gun coil PS prepared at BNL to replace 120 A PS R will be reduced (now –R=16 ~(3.3 T), in 5T present optics R=25, new R=12.5)

Actions taken

courtesy A. Pikin

Positioning system installed, Gun perveance changed In range 0.6-0.92

Tests Nov-Dec 2014

Actions taken

Using workaround with focusing potential Experiment showed reduction of anode current Need more robust Wehnelt electrode

Longer term vision

Strategy 1 (currently pursued)

Method : Improve optics and quality of the beam with low mirror-ratio optics
Goal: attain non-compromised design parameters

Strategy 2 (a back-up)

- Method : Deal with symptoms, use workaround for each one (focusing, interceptors, cooled anode...)
- Goal: attain parameters as close to design as practically possible

The transatlantic HEC² team

- R. Mertzig* (simulations, on-site commisioning)
- F. Wenander (supervision at CERN)
- E. Barbero (manufacturing, post-production)

- A. Pikin (chief designer, BNL supervision, EBIS)
- E. Beebe (operation of EBIS)
- R. Schoepfer (operation/commissioning support)
- D. McCafferty (operation/commissioning support)

our supporters

R. Catherall, Y. Kadi, R. Scrivens, J. Alessi,

funding bodies

* Visit poster session for more details on simulations

