
Doping Profile

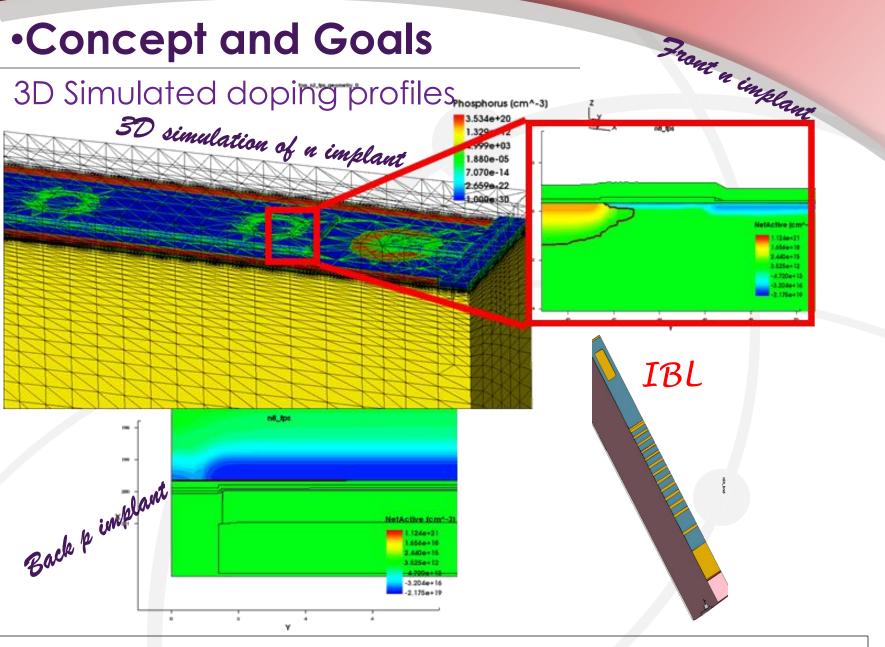
SiMS & SRP Measurements & Irradiations

<u>V. Gkougkousis^{1,2}</u> A. Lounis^{1,2}, N. Dinu¹, A. Bassalat^{1,2}, C. Nellist^{1,2}, S. Dumitriu¹

Laboratoire de L'accélérateur Linéaire
Université Paris-SUD XI

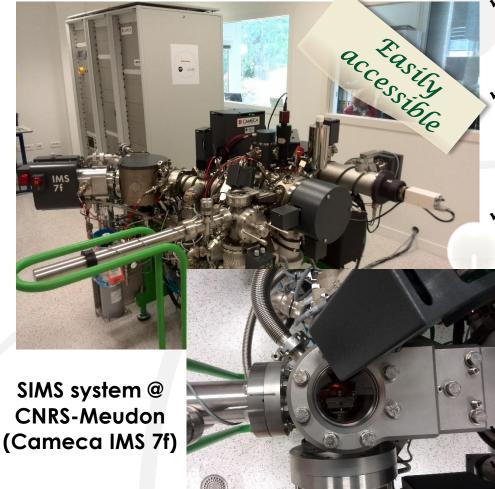
RD50 Workshop - CERN

Concept and Goals


3D Simulated doping profiles

Uniformly doped wafers:

- Controlled parameters
 - 1. Implantation dose and energy
 - 2. Screen oxide thickness and annealing
- Simplicity in simulation and study
 - 1. No geometrical effects
 - 2. Single implant and oxide layer


Simulations SYNOPSYS TCAD simulator Fabrication and implantation process simulation MC full cascade and damage calculation Exact processing parameters from foundries Thermal stresses and diffusion Cross-check with different models and simulators

Measurements VSIMS—Secondary ion mass spectroscopy VSRP—Spreading Resistance VSSRM—Scanning Spreading Resistance Microscopy

•SiMS

SiMS Method @ Versailles

- Analytical technique to <u>characterize the</u> <u>impurities in the surface and near surface</u> (~10µm) region
- Relies on sputtering of a <u>primary energetic</u> ion beam (0.5-20 keV) on sample surface and analysis of produced ionized secondary particles by mass spectrometry
- Good detection sensitivity for many elements: *it can detect dopant densities as low as 10¹³ cm⁻³*

Allows multielement detection, *has a depth resolution of 1 to 5 nm* and can give a lateral surface characterization on a scale of several microns

Destructive method,

It determines the *total dopant density profile*

•SiMS

Sample preparation

Sample preparation \succ

- Wafer Dicing (Uniformly doped wafers) of 4" and 6", not thinned)
- Chemical oxide etching for non pure bulk ** measurements
- No etching for through-oxide ••• measurements

\succ Future plans

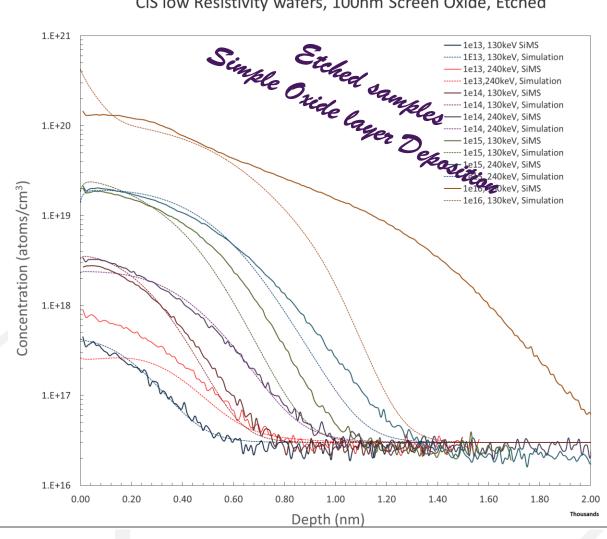
- Investigation of oxide layer thickness • with respect to etching rates and time
- ✤ AFM Measurements
- SiMS on the High resistivity Wafers
 - Sample preparation and Nicoleta Dinu measurements
- Sorin Dumitriu
- Francois Jomard

CiS and ADVACAM wafer test runs

N in N, CiS production, <100> orientation														
Oxide thickness	100 nm						200 nm							
P implantation doses	1013	cm⁻²	1014	cm⁻²	10 ¹⁵ cm ⁻²		10 ¹⁶ cm ⁻²	10 ¹³ cm ⁻²		² 10 ¹⁴ cm		10 ¹⁵ cm ⁻²		10 ¹⁶ cm ⁻²
Implantation energy (keV)	130	240	130	240	130	240	130	130	240	130	240	130	430	130
Annealing	4hours, 975 °C													

✓ $\rho = 0.25 \Omega/cm (3 \times 10^{16}/cm^3) 380 \mu m$ thickness

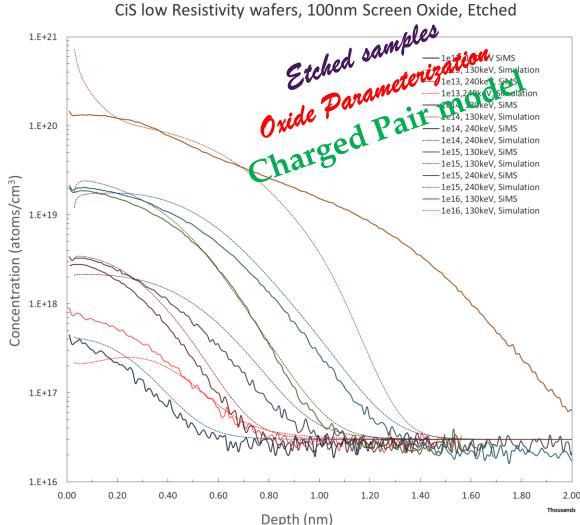
✓ $\rho > 4 \text{ k}\Omega/\text{cm} (1,1 \text{ x}10^{12}/\text{cm}^3) 525 \mu\text{m}$ thickness


N in P, ADVACAM production, <100> orientation, thickness of 675 µm or less,																
Oxide thickness		100 nm						200 nm								
P implantation doses	10 ¹³ c	cm ⁻²	1014	cm ⁻²	10 ¹⁵ cm ⁻²		1016 cm ⁻²		10 ¹³ cm ⁻²		10 ¹⁴ cm ⁻²		10 ¹⁵ cm ⁻²		10 ¹⁶ cm ⁻²	
Implantation energy (keV)	130	240	130	240	130	240	130	240	130	240	130	240	130	240	130	240
Annealing	3hours, 1000 °C (1h annealing + 1h wer oxidation +1h dry oxidation)															

- ✓ $\rho = 10 \text{ k}\Omega/\text{cm} (1.1 \text{ x} 10^{12}) 525 \mu\text{m}$ thickness
- ✓ $\rho = 0.2 0..25 \Omega/cm (2.5 3 \times 10^{16}) 675 \mu m$ thickness

n-in-n test wafers

$\rho = 0.25 \,\Omega/cm \left(\frac{3 \times 10^{16}}{cm^3}\right) \frac{380 \mu m}{Screen Oxide, Etched} \text{ thickness (n in n)}$



- Synopsys MC 1. **CrystalTRIM full** cascade simulator
- **Final oxide layer** 2. etching step implemented
- 3. Normal thermal annealing for implant activation
- Overall good agreement for low doses
- Pronounced systematic deviations in measured implant depth for higher dose samples
- Simulation shows shallower profile than actual samples
- Surface Effects

•n-in-n test wafers

$\rho = 0.25 \Omega/cm (3 \times 10^{16}/cm^3) 380 \mu m$ thickness (n in n)

- 1. No oxide deposition but real oxidation process simulation
- 2. Exact steps implemented from CiS process flow
- 3. MC Crystal TRIM implantation

11111111111111111111

- No systematic deviations
- Statistical disagreements of same order for all samples
- An effect with highest dose sample
- Second dose sample possible measuring or homogeneity effect

RD50 WORKSHOP

•n-in-n test wafers Synopsys and SILVACO diffusion Modeling

- Disagreements on high dose profiles
- Small deviations in lower doses, which become significant with dose increase

SILVÁCO

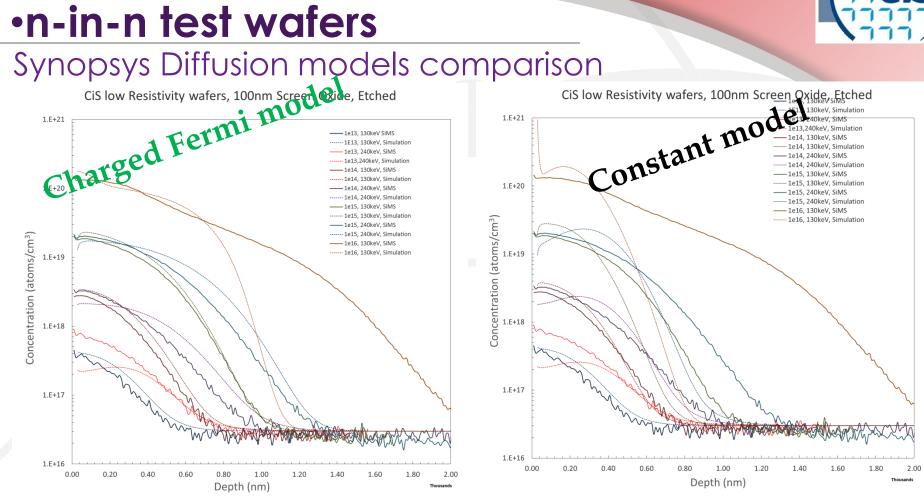
•Fermi Model

•4 CPL Model (clustering consideration)

•PLS Solid State Model

Synopsys

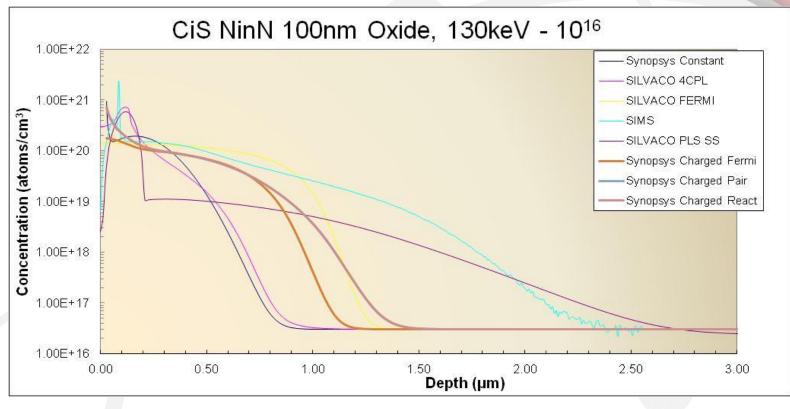
- •Charged Fermi model
- •Charged Pair Model
- •Constant Model
- •Charge React Model


Notes:

Default Synopsys model is Charged Pair while default SILVACO is Fermi Synopsys-SILVACO comparison only for the highest dose

n-in-n test wafers

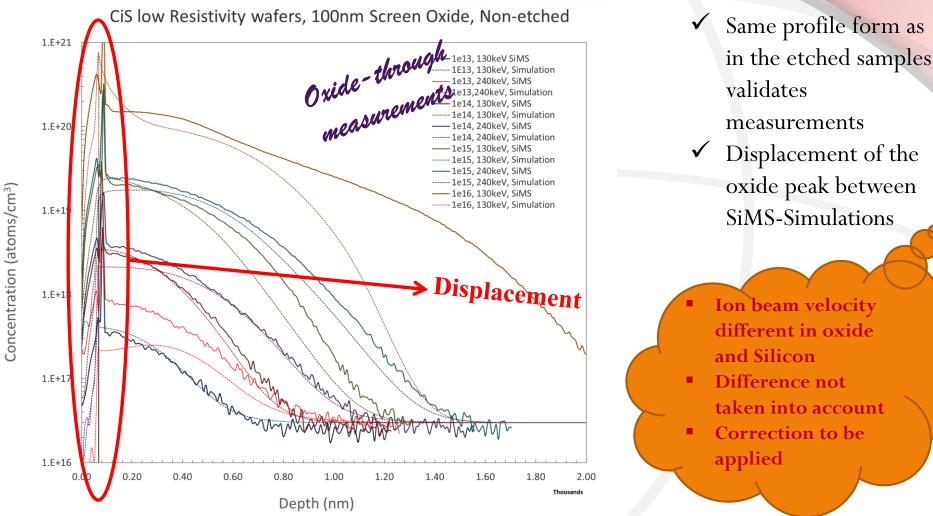
Synopsys Diffusion models comparison



- Charged Pair and Charged React model in these conditions give similar results
- No model gives adequate agreement for highest dose
- Standard model seems to quite good for intermediate and low doses

n-in-n test wafers

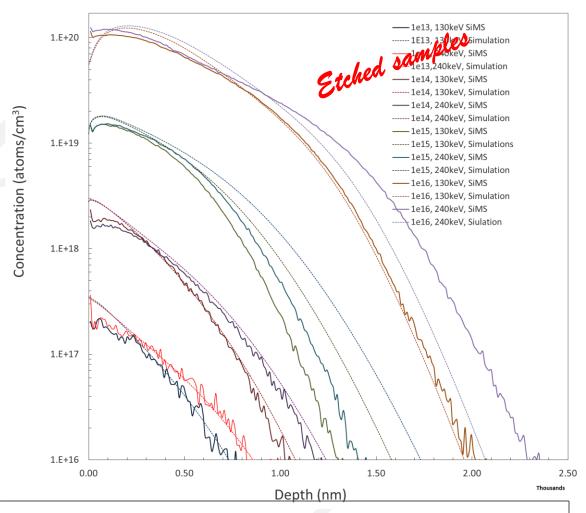
Synpsys-SILVACO high dose comparison



- No single model validated for doses over 10e15
- All frameworks give significantly shallower profiles than measurements SILVACO seems to give a better in depth description but needs adjustments in surface

•n-in-n test wafers

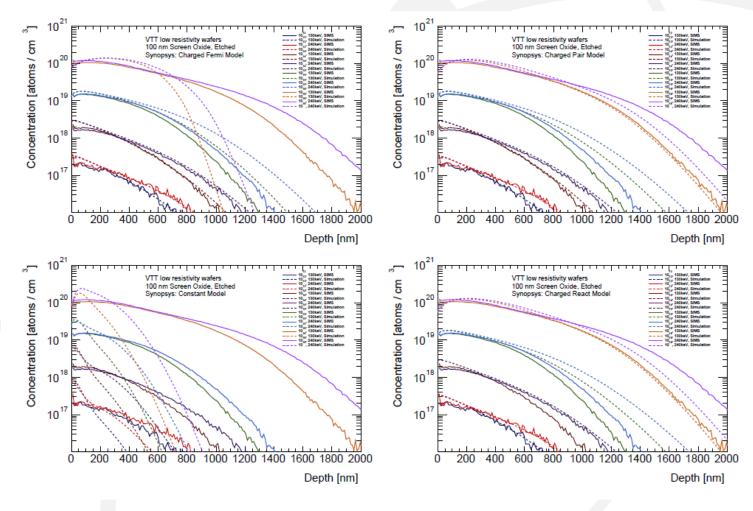
$\rho = 0.25 \Omega/cm (3 \times 10^{16}/cm^3) 380 \mu m$ thickness (n in n)



•n-in-p test wafers

$\rho = 0.25 \Omega/cm (3 \times 10^{16}/cm^3) 675 \mu m$ thickness (n in p)

- Simulations have been displaced towards 0 to compensate for oxide growth
- Advacam uses annealing through oxidation
- Dry + wet oxidation that really 'eats-up' dopant
- Oxide removed for SiMS
- Simulated oxide diffusion and complete oxidation

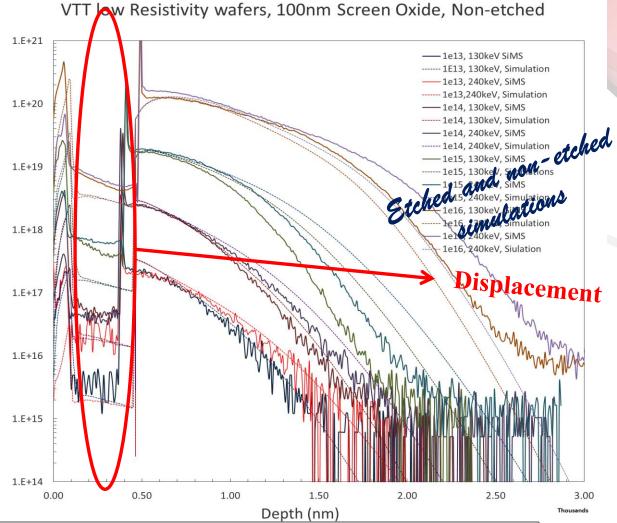


VTT low Resistivity wafers, 100nm Screen Oxide, Eatched

•n-in-p test wafers

 $\rho = 0.25 \Omega/cm (3 \times 10^{16}/cm^3) 675 \mu m$ thickness (n in p)

n-in-p test wafers

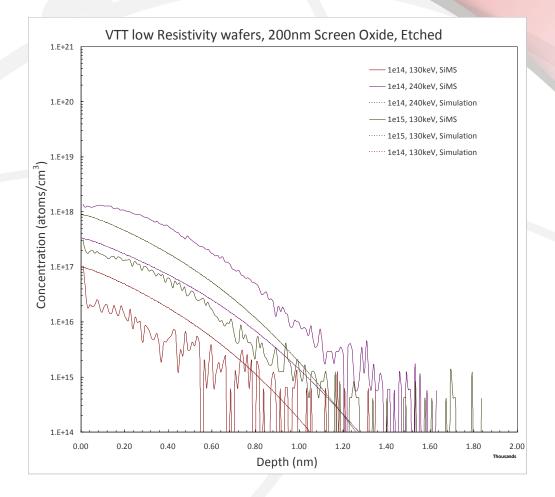

$\rho = 0.25 \Omega/cm (3 \times 10^{16}/cm^3) 675 \mu m$ thickness (n in p) Remarks

Overall good agreement on the low and intermediate doses

- Disagreement on the profile distribution for the higher-intermediate doses but almost perfect Concentration (atoms/cm³) agreement for one of the highest ones
- Deviation trend between simulation - SiMS exhibits contradicting behavior

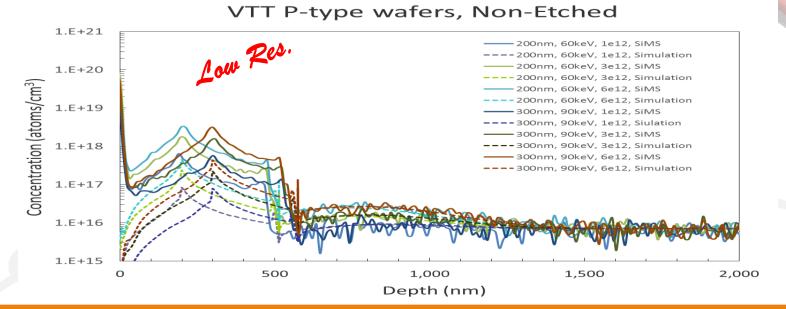
Wafer – annealing uniformity

No difference expected for etched - non-etched samples



•n-in-p test wafers

 $\rho = 0.25 \Omega/cm (3 \times 10^{16}/cm^3) 675 \mu m$ thickness (n in p)


- Measurements for 200nm screen oxide
- At the limit of detection capabilities
- One can observe the 10¹⁴/cm³ imposed limit for silicon wafers
- No oxide present, was not deemed necessary for this study

P-spray low resistivity wafers

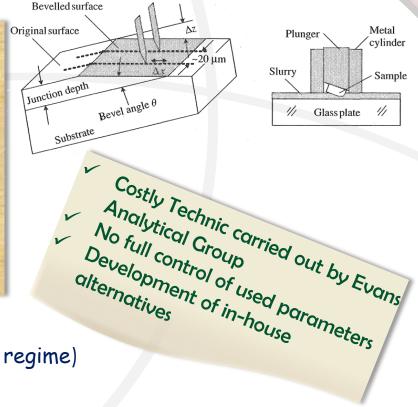
ADVACAM p spray Calibration Wafers

N in P, VTT production, <100> orientation

Oxide thickness		200nm		300nm						
P implantation doses	1X10 ¹² cm ⁻²	3X10 ¹² cm ⁻²	6X10 ¹² cm ⁻²	1X10 ¹² cm ⁻²	3X10 ¹² cm ⁻²	6X10 ¹² cm ⁻²				
Implantation energy		60 KeV		90 KeV						
Annealing	3hours, 1000 °C									
		000 11 .	1							

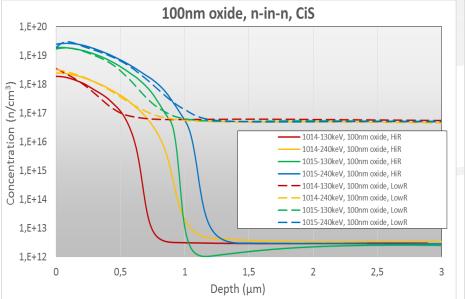
✓ $\rho = 2 \Omega/cm (7 \times 10^{15}) - 380 \mu m$ thickness

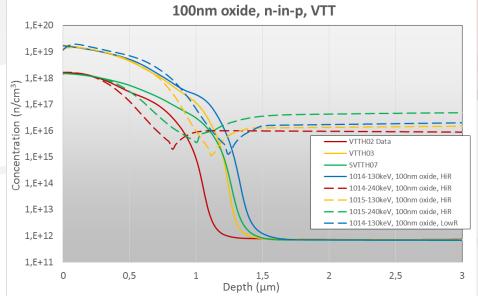
•SRP Measurements


Method principles

Analytical technique to characterize the majority carrier and active dopant concentration profiles in semiconductor structures

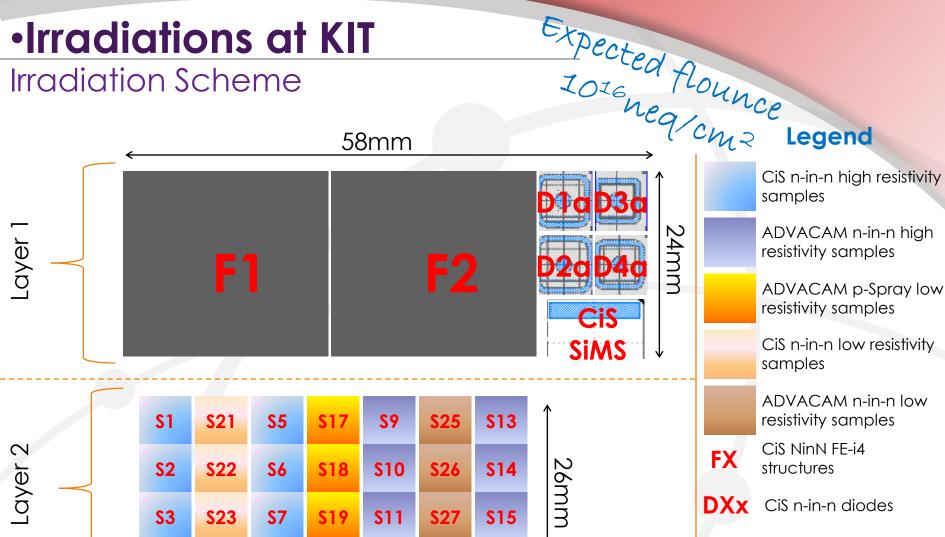
- Pl. Pair of specially conditioned point contact probes which are stepped across the bevel surface of the semiconductor sample
 - 2. Resistance between two probes is measured at each step
 - 3. Resulting data computer processed into detailed carrier concentration and resistivity profiles from which dopant concentration profiles can be deduced


Pros: Very high dynamic range (10¹² - 10²¹ cm⁻³) Capable of profiling very shallow junctions (nm regime)


Conns: Destructive method

•SRP Measurements

High and low resistivity results



- Cis High and Low resistivity n-in-n test wafers with 100nm screen oxide
- Only n-type carriers

- ADVACAM High and Low resistivity n-in-p test wafers with 100nm test oxide
- N-type carriers that convert to p-type at max implantation depth

Irradiations at KIT

S4

S24

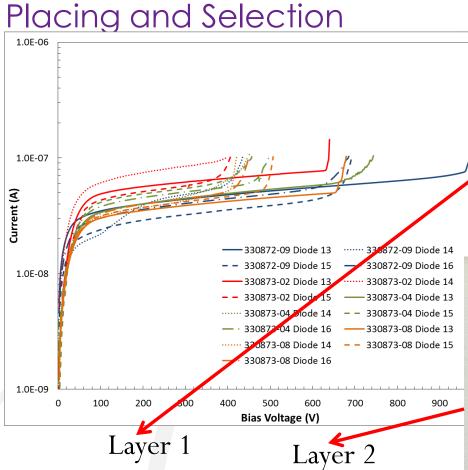
S16

S28

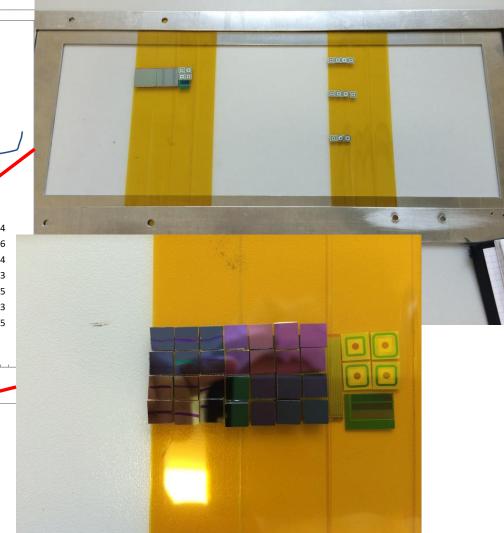
S20

S8

S12

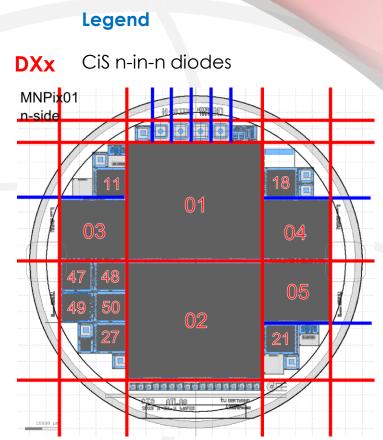

CiS n-in-n wafer SiMS

test structure


CiS

SiMS

Irradiation at KIT


Diodes for each dose were selected accordingly to their quality and breakdown voltage

•Irradiation at KIT Irradiation Scheme

Irradiation to $5 \cdot 10^{15} \text{ neq/cm}^2$ Irradiation to 10^{15} neq/cm^2 Irradiation to $5 \cdot 10^{14} \text{ neq/cm}^2$ Irradiation to $5 \cdot 10^{14} \text{ neq/cm}^2$ Irradiation to

- Diodes with 1,2,3 and 4 guard rings
- FE-I4 matrices with standard and varied bias rail geometry
- CiS n-in-n 4" wafer production last year
- Ivs, CVs and Guard ring potential measurements performed to all diodes before irradiatons
- CVs and Ivs to FE-I4s before irradiation performed

•Future Plans

SiMS – SRP – AFM Calibrations and closure

- Proven good agreement between measurements and simulations
- Technical competences and experience in doping profile and simulation
- Future Plans
 - Conclude SiMS oxide measurements before irradiatio
 - Maximum likelihood fits in bi-directional controls
 - □ SiMS on selected irradiated samples
 - Simulation description of radiation damage
 - □ SRP measurements on irradiated samples

THANK YOU FOR YOUR ATTENTION!!