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CMS needs to replace End-cap Electromagnetic and Hadronic calorimeters for Phase II due 
to radiation damage. This opens new possibilities for Calorimeter design.

We are investigating in detail the possibility of using a high granularity calorimeter with 
M  channels of silicon pads, integrating EE and HE functions (CALICE concept) with a 

Back HE to capture energy tails.

We expect that with such detailed information from the calorimeter, coupled with a 
precision silicon tracker, we will be able to measure physics objects with high precision.

High Granularity Calorimeter (HGCAL)

Current detector An Si Based HGC CMS at the HL-LHC
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Major Engineering Challenges

600 m2 of Silicon in a high radiation environment.
 Cost.
 Very high radiation levels – need to plan for 3x1016 neutrons/cm2 in the highest

Cooling.
 We need a compact calorimeter with small gaps between absorber plates.
 We need to operate at – 30oC
 Total power is ∼ 100 kW.

Data and Trigger
 Channel count is 9M. Producing a prodigious amount of data.
 Data used in the Level- 1 CMS event trigger.

High Granularity Calorimeter (HGCAL)
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Sensors under investigation:
 Silicon growth technique (Epi: epitaxial

layer, FZ: floating zone)
 Polarity: n-on-p (p-type), p-on-n (n-type)
 Active thickness: 

• FZ: 320, 200 and 120 um
• Epi: 100 and 50 um

 Size: 
• Large diodes : 5 × 5 mm2

• Small diodes : 2 × 2 mm2

HGCAL operating conditions:
 Temperature (T) < −30◦C: ∼ −35◦C
 Bias voltage (U): 600 ÷ 1000 V

Tolerance study of large area pad diodes as active sensor for a High Granularity
Electromagnetic Endcap Calorimeter for PhaseII Upgrade

Investigate sensor performance after neutron irradiation with neutron equivalent
fluences up to 1·1016n/cm2

HGCAL Silicon sensors

~10cm
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Available sensors

 Sensors irradiated in Ljubljana
 Sensors now at Hamburg University
 2 identical sensors for each type and each

fluence
 P: bulk P (n-on-p)
 N: bulk N (p-on-n)

List of sensors:

HGCAL Silicon sensors
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Properties to be measured:

 Bulk current I(U, Φ, h) → power consumption, noise

 Capacitance (1 MHz signal): C(U, Φ, h) → capacitance seen by electronics (below ~50pF)

 Charge collection efficiency CCE(U, Φ, thickness) → signal

 MIP sensitivity with beta source → for calibration purpose and S/N

 Effect of annealing on the properties (up to 3 months at room temperature)

U: bias voltage (V)

Φ: neutron fluence (cm−2)

T: operating temperature

h: sensor thickness (µm)

IV/CV set-up            
TCT set-up for CCE

IR laser (1063 nm)

continue with 

measures at CERN

Characterization after neutron irradiation
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Bulk current vs fluence           N-type vs P-type diodes

 Bulk current normalized by the volume of the diode
 Bulk current compatible between P and N type diodes

Characterization after neutron irradiation
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 Bulk current normalized by the volume of the diode
 I(−20◦C) ~ 3 · I(−30◦C)

Bulk current vs fluence Temperature dependence

Characterization after neutron irradiation
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Calibration curve from -10oC to -40oC

Characterization after neutron irradiation

 measurement of bulk current vs bias voltage (IV) as function of temperature 
(from -10 to −40◦C) for few diodes

 Results are compatible between p-type and n-type
 Also compatible between different active thickness
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TCT spectra 600 V (normalized amplitude)

 IR laser (1060 nm) pulse width: 50 ps
 TCT pulse width < 10ns
 Shorter pulse and raise time after irradiation → relevant for timing

Characterization after neutron irradiation
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Charge collection efficiency measurement TCT IR laser

 Measure the charge Qref for unirradiated diode (reference) integrating spectrum from TCT
 Qref is defined for fully depleted diode at U = 400 V
 Q = integrated charge for irradiated diode

 CCE =  𝑄 𝑄
𝑟𝑒𝑓

(400𝑉)

Characterization after neutron irradiation
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Charge collection efficiency n-type vs p-type

Characterization after neutron irradiation

 For a low bias voltage CCE for n-type diodes is higher than for the p-type
 For a higher bias voltage p-type and n-type have similar CCE values. 
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Charge collection efficiency vs temperature p-type diodes

Characterization after neutron irradiation

 We have the same result for the CCE at -20oC and -30oC
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Charge collection efficiency in electrons (21.900 e- for 300um of Si)

Characterization after neutron irradiation
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 Charge collection efficiency (CCE) measured at −20◦C and at −30◦C:

→ CCE measurement at −20◦C can be used for lower temperatures

 Signal pulse shorter than 10 ns (from TCT measurement)

 To do:

 perform 80 min at 60◦C additional annealing on half of the diodes 

(two weeks at room temperature) → repeate measurements

 Re-irradiation of other half of the sensors (those not annealed) to 

have estimate for +50% fluence with respect to the nominal one

 compare against data of HPK campaign (lower fluence neutrons, but 

also protons...)

 Continue with the measurement at CERN after the annealing and Re-

irradiation of the sensors

 Measurement with beta source to be performed → for MIP sensitivity

Summary and future activities
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Questions …


