Energy Dependence of Proton Radiation Damage in Si-Sensors

A. Junkes for the CMS tracker collaboration

November 19th 2014 25th RD50 meeting CERN

Motivation

Radiation levels of fluences up to $\Phi=10^{16}$ cm⁻² are expected for CMS

Radiation damage changes the performance of the sensors

- Increase of leakage current
- Increase of trapping
- Change of the depletion voltage

Understanding of radiation damage is important for the design of the sensor

This presentation focuses on defects responsible for the change of the depletion voltage

Ш

Щ

Point and cluster defects

Change of detector properties as result of defect generation
→ Aim: Understanding of microscopic defects depending on irradiation type

UHU <u>i</u>ii

11/19/14

Materials

N- and P-type pad-diodes from the "CMS-HPK" campaign Deep-diffused Float Zone (dd-FZ), 200 μm (200 μm active bulk + 120 μm substrate) Float Zone (FZ), 200 μm Magnetic Czochralski (MCZ), 200 μm

υн

붜

Thermally Stimulated Current technique

TSC principle

- 2. Recording of charge emission $(e_{e,h})$ from filled traps during constant heating
- 3. N_D from integral of TSC-current

Single shot technique:

1. Filling of traps with charge carriers at low T (<30 K) → Filling (majority carriers with zero bias, majority and minority carriers by forward bias, light)

• Signal as function of temperature

11/19/14

UH

Comparison of n- and p-type sensors

11/19/14

Oxygen dependence of E(30K)

P-type: Introduction rate of E(30K) increase with oxygen concentration N-type: Introduction rate of E(30K) decrease with oxygen concentration

11/19/14

UH

Annealing behavior of donor E(30K)

Time dependence of annealing of E(30K) very similar for different materials Introduction rates for E(30K) for MCz similar for different fluences

High Energy Proton Irradiated Sensors

- Point defects (like IO₂) suppressed after 23 GeV proton irradiation
- Effect large at high fluences \rightarrow Filling of defects suppressed
- Possible reason: shielding from cluster defects

UH

Comparison of introduction rates

 $IR=N_D/\Phi$

2

3

23 MeV protons

23 GeV protons

23 MeV protons

- Generation rate constant for acceptors
- Oxygen dependence for donors

23 GeV protons

- Generation of acceptors compatible 0
- Generation of donors reduced 0

UH

5

Summary

23 MeV protons

- Defect generation in p-type silicon very similar to n-type silicon
- Oxygen dependent donor generation observed
- Similar generation of acceptors
 - \rightarrow General understanding of radiation damage true for p-type

23 GeV protons

- TSC measurement technique problematic
- Point defect signature suppressed
- Effect more dominant for high irradiation fluences
- Possible explanation: Shielding of point defects from cluster defects

Outlook

Try other filling methods for GeV p irradiated samples (light) Exploit effect of shielding from clusters from DLTS investigations Investigate pion and 800 MeV irradiated samples

UН

Back Up

Clustering effect

11/19/14

UН

A. Junkes -A25thn ket50 Meeting

Understand correlation between microscopic and macroscopic effects

Oxygen rich silicon

- Frenckel pairs are created due to irradiation
- Defect complexes form due to migration
 - \rightarrow Migration depends on thermal energy
 - \rightarrow Kinetics like in chemical reactions

Benefit of oxygen rich silicon: VO_i generation high – VP suppressed

Defect properties

Scockley-Read-Hall statistik

Occupancy of defect states with electrons or holes is determined by

capture

Ĥ

11/19/14

$$c_{n,p} \propto \sigma_{n,p} \cdot n, p$$

and emission
$$e_{n,p} \propto \sigma_{n,p} \cdot \exp\left(\pm \frac{E_t - E_{C,V}}{k_B T}\right)$$

Defect properties

 $\sigma_{n,p}$: e⁻, h⁺ capture cross section E_a: activation energy for ionisation N_t: trap concentration

Capture of electrons always combined with hole emission and vice versa

De- and recharging offers possibility to detect defects

Defects with impact on N_{eff}

- Cluster defect E(30K) enhanced after protons
- Shallow donor E(30K) overcompensates deep acceptors

UH

Ĥ

Annealing for Neutron Irradiated Sensors

• Concentrations from microscopic measurements reproduce N_{eff} from C-V • Prediction of V_{dep} possible also for neutron

Non Ionising Energy Loss \rightarrow bulk damage

