Design and Fabrication of an Optimal Peripheral Region for the LGAD

<u>Pablo Fernández-Martínez</u>, D. Flores, V. Greco, S. Hidalgo, A. Merlos, G. Pellegrini and D. Quirion

IMB-CNM (CSIC), Barcelona (Spain)

This work is supported by RD50 Collaboration

Talk Outline

- Critical aspects of the LGAD design
- Optimization of the multiplication junction
- Optimization of the junction edge termination
- \succ Optimization of the periphery
- New production run
- Conclusions

Critical aspects of the LGAD design

Core region: Optimization of the Multiplication layer

Doping profile of the P and N⁺ diffusions is crucial

Optimization of the Junction Edge Termination

Junction Edge Termination: Deep N-type diffusion

- The electric field peak is reduced at the JTE curvature
- The highest electric field value is located at the main junction (1D)
 - \rightarrow multiplication control

Junction Edge Termination: Deep N-type diffusion

Junction Edge Termination: Segmented devices

Design of the Device Periphery

Peripheral region should ensure the voltage capability as well as limiting the leakage current.

After the full (vertical) depletion is reached, a fast lateral depletion of the lowly doped substrate takes place.

A deep P+ diffusion (C-Stop) is needed in the die periphery to avoid the depletion region reaching the unprotected edge

Optimization of the periphery: Guard Ring

Biased guard Ring around the detection region.

The ring is independently biased to extract the surface component of the current

Voltage capability is preserved (same curvature as JTE)

Optimization of the periphery: Positive oxide charges

□ Field oxides grown in wet conditions $(H_2 + O_2)$ typically have a positive charge density in the range of 5e10 cm⁻²

Surface inversion of the substrate and modification of the depletion dynamics.

Optimization of the periphery: Strategies

□ Positive oxide charges (radiation induced or technologically originated) induce surface inversion of the substrate → Current path towards the collector electrode.

Run 6474

Electrical Characterization: Yield

- ✓ High Voltage Capability (Breakdown > 1100 V) in all wafers
- **\times** Leakage current varies from some 10 nA to more 100 μ A in devices within the same wafer

New Fabrication Run

Top Distribution

Back Metallization

New Fabrication Run

- 9 LGAD Pad Detectors \bigcirc
 - ✓ 3 (8 x 8 mm multiplication area)
 - ✓ 6 (3 x 3 mm multiplication area)
- 9 PiN Detectors \bigcirc
 - ✓ 3 (8 x 8 mm active area)
 - 6 (3 x 3 mm active area)
- 4 LGAD pStrips Detectors
 - 32-160-50-06-24
 - 32-160-62-06-12
 - 64-80-10-06-24
 - 64-80-22-06-12
- 2 PiN pStrips Detectors
 - 32-160-50-06-24
 - 64-80-10-06-24
- 1 FEI4 compatible pStrip Detector Ο

IJS Ljubljana

- 1 Pixelated LGAD Detector (6 x 6 pixels) Ο
- 1 Pixelated PiN Detector (6 x 6 pixels)

INFN Torino

- **3** LGAD for Timing Applications
 - 200 um to chip edge
 - 250 um to chip edge
 - 800 um to chip edge

LAL Orsay

1 Specific Test Structure (SPR, SIMS, XPS) \bigcirc

113 Structures

- 47 (10 x 10 mm, total area)
- **b** 66 (5 x 5 mm, total area)

New Fabrication Run: LGAD & PiN pad Detectors

LGAD & PiN Pad Detectors \bigcirc

- Multiplication Area
 - 8 x 8 mm (Type 1, 2, 3) **
 - * 3 x 3 mm
 - \geq Termination:

- * P-Stop + N-Guard Ring (Type 3, 6, 9)
 - * P-Stop + N-Guard Ring with JTE (Type 2, 5, 8)
 - * JTE + P-Stop + N-Guard Ring with JTE (Type 1, 4, 7)
 - * Field Plate 10 μm, 0 μm (Type 7, 8, 9)

New Fabrication Run: LGAD & PiN strip Detectors

LGAD and PiN Pixelated Detectors

IJS Ljubljana

- **1** Pixelated LGAD Detector (6 x 6 pixels) Ο
- **1** Pixelated PiN Detector (6 x 6 pixels) Ο

LGAD for Timing Applications

INFN Torino

- **3** LGAD for Timing Applications Ο
 - 200 um to chip edge
 - 250 um to chip edge \checkmark
 - 800 um to chip edge \checkmark

Specific Test Structure. SRP, SIMS, XPS

Conclusions

- Optimization of the LGAD peripheral region is crucial for the detector performance
 - Edge termination techniques confine the high electric field into the multiplication area and give voltage capability to the detector
 - Structures within the peripheral region avoid high leakage currents and degradation
- **Deep N-diffusion** termination technique has proved good performance
- **P-Spray** technique has shown poor effectiveness
- **New production run** at the IMB-CNM include *pad* and segmented (*strip* and *pixel*) designs with an optimized peripheral region based on the P-Stop technique.
- \Box 300 µm-thick prototypes with the new mask set is now in production. A 200 μm-thick run is on going.

Thank you

Questions?

Instituto de Microelectrónica de Barcelona 💥 CSIC Centro Nacional de Microelectrónica

Back up Slides

Just in case

Instituto de Microelectrónica de Barcelona 💥 CSIC Centro Nacional de Microelectrónica

Optimization of the Multiplication layer

Charge Collection Measurements: Electrons (mips)

□ LGAD diodes with different values of the doping dose of the p-type multiplication layer. \blacktriangleright W7 \rightarrow 1.6 × 10¹³ cm⁻²

• W8 \rightarrow 2.0 × 10¹³ cm⁻²

G. Kramberger, 24th RD50 Workshop, Bucharest

□ Wafers have **different gains**:

Good uniformity of gain over the wafer.

 \blacktriangleright Very good stability of some diodes up to >1000 V.

Edge Termination: Why is needed?

- The N⁺ shallow contact and the P-multiplication layers have to be locally created with a lithography mask
 - The electric field at the curvature of the N^+/P junction is much higher than that of the \checkmark plane junction (where Gain is needed)
 - Avalanche at the N^+/P curvature at a very low reverse voltage (premature breakdown) \checkmark

Design of the Edge Termination: Critical Electric Field

B. Jayant Baliga (2008): Fundamentals of Power Semiconductor Devices

Junction Edge Termination: Floating Guard Ring

The N+ shallow diffusion is used to implement a floating guard ring.

- The lateral electric field distribution is smoothed leading to two peaks (main junction and floating guard ring)
- The electric field peak and the risk of avalanche breakdown at the curvature of the main junction is reduced. Optimization of the guard ring location is needed.

Junction Edge Termination: N⁺ Extension

The N⁺ is used to extend the N+ beyond the edge of the multiplication layer

- Phosphorous diffuses more in the very lowly doped substrate (higher curvature radius and voltage capability).
- The electric field rapidly increases at the plain junction (multiplication).

Junction Edge Termination: Junction Termination Extension

Lowly doped N-type Deep diffusion (JTE) around the curvature of the main junction

- Additional (specific) photolithographic step
- **•** The addition of a Field Plate moderates the electric field at the JTE curvature

Implementation: Problems at the peripheral region

