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Motivation
● Instabilities of segmented silicon sensors have been observed which can be depend on 

environment and time e.g: 

  - Dependence of the breakdown voltage on humidity and ramping speed

  - Dependence of leakage current on humidity

  - Dependence of charge sharing and charge loss on humidity

● Instabilities caused by changes of the potential distribution on the sensor surface and of

the charge distribution at the Si-SiO
2
 interface

● This work:

1. Surface resistivity (surface potential)

    - GCD (Gate Controlled Diode)

    - MOSFET

2. Charges at the Si-SiO
2
 interface (N

ox
)

    - Dependence on X-ray dose

    - Dependence on E-field and time
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Effects of surface potential
● Simulation example of time dependent surface potential 

  - AC coupled n+-p sensor with p-spray (N
p-spray 

= 5·1011 cm-2), N
ox 

= 1·1010 cm-2

   - Conductive layer of 10 nm on top of passivation with R
□
 ≈ 7·1014 Ω

  - Voltage ramp: - 10 V/s up to - 600 V and then constant at - 600 V 
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Effects of surface potential
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Effects of surface potential
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Effects of surface potential
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Effects of surface potential
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Effects of surface potential
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Effects of surface potential
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● Most streamlines end at implant 

 

 

● Many streamlines end at Si-SiO
2
 interface

→ charge sharing, charge losses 

 

 

E-field in the silicon sensitive to surface conditions. For R
□
 ≈ 7·1014 Ω

it takes about 60 min to reach steady-state on surface.   

p-bulk
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Effects of N
ox

● Simulation example of oxide charge dependence

  - AC coupled n+-p sensor with p-spray (N
p-spray 

= 5·1011 cm-2)

   - Neumann boundary conditions (E
n 
= 0)

 

 

 

Potential at - 600 V, N
ox

 = 1·1010 cm-2 Potential at - 600 V, N
ox

 = 5·1011 cm-2

- pitch 80 μm

- width 18 μm

- thickness 200 μm

- N
A
 = 3.4·1012 cm-3

E-field in the silicon sensitive to oxide charges. Experimental observation of change of 
charge collection with N

ox
 → talk by A. Junkes at last RD50 meeting.    
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Surface resistivity: GCD
● Circular GCD with 5 gate rings produced from CiS 

  - Diameter of diode: 1 mm

  - Width of rings: 50 μm

  - Distance between rings: 5 μm

  - Insulator: 350 nm SiO
2
 + 50 nm Si

3
N

4

   
- n-type doping: ≈ 1·1012 cm-3

   - Irradiated to 1 GGy  

 

 

 

1. I
GCD

 as function of gate voltage V
G1

 on the

    first ring (V
diode

 = V
G2

 = - 12 V)
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Surface resistivity: GCD
2. Bias V

G1
 into strong inversion (- 70 V) and

    measure I
GCD

 as function of time after 

    disconnecting the gate probe from the voltage   

    source

3. Determine V
G1 

(t) from steps 1 and 2

4. Determine the time constant τ = R
surf

·C
G1

 where

    C
G1

 is the capacitance of the gate to the bulk

5. Calculate the sheet resistance R
□
 for the 5 μm

    wide insulator

    
Relative humidity RH [%] 30 35 40 46

Discharge time [s] 820 150 120 16

R
surf

 [1012 Ω] 50 9.1 7.3 0.97

R
□
 [1015 Ω] 66 12 9.7 1.3

●     The value of the sheet resistance R
□
 increases by a   

      factor of ~ 50 when RH changes from 46 to 30 % 
●     The described measurements are possible only for
      irradiated GCDs (high surface current due to interface
      traps) and in limited V

G1 
range where the Si under the

      SiO
2 
is depleted   
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Surface resistivity: MOSFET
● Circular pMOSFET from SINTEF (AGIPD design) 

  - Insulator: 250 nm SiO
2

  - Passivation: 500 nm SiO
2
 + 250 nm Si

3
N

4 
rings

  - 45 μm wide passivation layer between source-gate

    and gate-drain

   
- n-type doping: ≈ 5·1011 cm-3

   - Non-irradiated

  - Crystal orientation: <100>   

 

 

 

1. I
ds 

(V
gate

) calibration (V
ds 

= - 50 mV)

1500 μm 
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Surface resistivity: MOSFET
2. Bias V

gate
 to an initial gate voltage V

ini 
, then 

    disconnect the gate probe and measure I
ds

 (t)

  - Example: V
ini

 = - 20 V and RH = 50 % at 20 °C

3. For each I
ds

 data point in I
ds

 (t) calculate the

    corresponding V
gate

 value by interpolating

    the drain-source current from the I
ds

 (V
gate

) 

    

V
gate 

= - 20 V

t
0

t
0
 

I
ds 

vs Time V
gate 

vs Time
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Surface resistivity: MOSFET
4. Calculate I

surf
 (t) = C

gate
·dV

gate
/dt

    - Determine R
surf 

= V
gate

/I
surf

  

    

5. Calculate the sheet resistance R
□
   

    

Surface resistivity has ohmic behavior. Extrapolating from simulation p.2: Steady-
state reached after 4 days for R

□
 → very long time constants.      

I
ds 

vs Time R
□ 
vs V

gate

RH = 50 % @ T = 20º C RH = 50 % @ T = 20º C
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Surface resistivity: MOSFET
● Determination of surface current vs. gate voltage for different initial voltages

 

 

 

From measurements with V
ini

 = - 10 V and V
ini

 = - 70 V

no dependence on the initial gate voltage was found, 
if there are no variations on humidity.      

I
surf  

vs V
gate
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Surface resistivity: Summary

● Surface resistance R
□
:

- ohmic characteristics (independent of voltage)

- strong dependence on humidity (x50 for RH 46 % → 30 %)

- typical values at RH = 50 % order (1016)

  → time to reach steady state conditions in strip sensors: days, and even longer in dry

       atmosphere

- dependence on technology/insulator-type and temperature still to be studied

Next:

● N
ox

 vs. electric field - time – surface damage  
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N
ox

: Field-enhanced charge injection
C-V at 10 kHz (1 GGy <111>)

C
fb

1500 μm 

● Determination of oxide-charge density (N
ox

)

using C-V measurements on MOS-C as function

of E-field + time

● Circular MOS-C from CiS 

  - Insulator: 350 nm SiO
2
 + 50 nm Si

3
N

4

   
- Non-irradiated and irradiated to 1 GGy

  - Crystal orientation: <100> and <111>

● Bias cycle for the gate voltage V
gate

1. Set V
gate

 to V
ini

 in inversion

2. Remain at V
ini

 for the time interval t
bias

3. Ramp V
gate

 from inversion to accumulation

    (forward ramp) and back to V
ini

 (reverse ramp)

4. Start new cycle with different t
bias

 

 

●     For  E = 1.13 MV/cm
     (1): t

bias
 = 0' forw.: initial V

fb
 → N

ox
0

         (2): t
bias

 = 0' rev.: ΔV
fb

 < 0 → ΔN
οx

 < 0 discharge of states  

            close to the interface
     (3): t

bias
 = 120' forw.: ΔV

fb
 > 0 → ΔN

οx
 > 0 field-enhanced

            charge injection
●     (4): t

bias
 = 120' rev.: decrease of ΔV

fb
 → discharge of   

            states close to the interface      

(1) (2)(3) (4)

V
fb (3)

V
fb (1)

V
fb (4)

V
fb (2)
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● N
ox

 = C
ox

· (-V
fb

 + Φ
ms

)/(q
0
·A

g
)

● N0
ox

 value of N
ox 

determined from forward

C-V curve at lowest V
ini

 and for t
bias

 = 0 min

● ΔΝ
ox

 = N
ox

 – N0
ox

● E ≈ |V
gate

 – V
fb
|/d

ox
   

 

 

N
ox

: Field-enhanced charge injection
ΔΝ

ox
 from C-V at 10 kHz (1 GGy, <111>)

●     N
ox

 increases with t
bias

 and saturation values are   

     reached after about 120 min
●     For non-irradiated MOS-Cs the effects are at most
     20 % of the initial N0

ox

●
         

For irradiated MOS-Cs the effects are as high as 50 %   

     of the initial N0
ox

●
        

Effects are always bigger for <111> MOS-Cs compared

     to <100> MOS-Cs
●     Difference N

ox
 for forward and reverse ramps 

     → Discharge near-surface states in accumulation

Field-ehanced charge injection observed

 E = 1.13 MV/cm

E = 0.68 MV/cm

  E = 0.39 MV/cm

 E = 1.47 MV/cm

E = 0.8 MV/cm

  E = 0.41 MV/cm

ΔΝ
ox

 from C-V at 10 kHz (1 GGy, <100>)
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Determination of N
ox

: MOSFET
● Determination of oxide-charge density (N

ox
)

using I
ds

 (V
gate

) measurements on pMOSFET

as a function of X-ray irradiation
● Circular pMOSFET from Canberra (AGIPD design) 

         - Insulator: 250 nm SiO
2

                  
- n-type doping: ≈ 6·1011 cm-3

          - Crystal orientation: <111>

● Operation of the test device for constant V
ds

 

 

       Selected value of drain-source voltage in nonsaturation region V
ds

 = - 50 mV.      

V
ds 

= - 50 mV

V
th 

≈ 5 V

I
ds

 vs V
gate

 before irradiation

1500 μm 
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Measurement cycle with the MOSFET
● Establish of a measurement cycle to measure the threshold voltage shift due to field-enhanced 

injection of positive charges at the Si-SiO
2
 interface

- 1st up: I
ds

 vs V
gate 

from accumulation (2 V) to strong inversion (- 20 V)

- Bias the V
gate

 @ - 20 V for 10 min and record the I
ds

- 1st down: I
ds

 vs V
gate 

from strong inversion (- 20 V) to accumulation (2 V)

- 2nd up: I
ds

 vs V
gate 

from accumulation (2 V) to strong inversion (- 20 V)

      

       

 

 

10 min @ V
gate

 = - 20 V

E ≈ 0.60 MV/cm

V
gate 

= - 20 V 1st down 2nd up1st up

I
ds

 vs Time before irradiation-cycle

   From the decrease of I
ds 

(t) for constant V
gate

 we obtain V
th

 (t) and ΔN
ox

 (t). 

Measurement is also possible during irradiation.      

I
ds

 vs Time before irradiation
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N
ox

: Field-enhanced charge injection
● Use 1st up curve to relate change of I

ds
 to V

th

  

      

       

 

 

Monitoring of the charge carrier injection during the 
bias stressing at V

gate
 = - 20 V for 10 min. 

● Assume the threshold voltage shift is equal to the flatband voltage shift                            

● The positive charge carrier injection at the Si-SiO
2
 interface is calculated from  

 

 

10 min @ V
gate

 = - 20 V 10 min @ V
gate

 = - 20 V

 ΔV
th 

vs Time before irradiation  ΔΝ
ox 

vs Time before irradiation 
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N
ox

: X-ray irradiation
● Apply the measurement cycle to measure the threshold voltage shift due to field-enhanced 

injection of positive charges at the Si-SiO
2
 interface as function of X-ray irradiation

- Measurement immediately after irradiation

- Bias V
gate

 = 0 V during irradiation and V
ds

 = - 50 mV

      

       

 

 

1 kGy

100 Gy
10 Gy
0 Gy

I
ds

 vs Time after irradiation-cycle

1st up 1st down 2nd up

V
gate 

= - 20 V

I
ds

 vs V
gate

 after irradiation-1st up 

V
th

V
th V

th
V

th

Dose [Gy] V
th

V
fb

N
ox

 [1011 cm-2 ] N
ox 

(Dose) – N
ox 

(0 Gy) [1011 cm-2 ]

0 5.0 4.8 3.8 0

10 5.6 5.4 4.3 0.5

100 6.4 6.1 4.9 1.1

1 k 9.7 9.4 7.8 4.0

Significant increase ~ 100% of N
ox

 

for irradiation dose up to 1 kGy. 

1 kGy

100 Gy

10 Gy

0 Gy
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Conclusions and Outlook

● The performance of segmented Si-sensors is influenced by the conditions at the sensor

surface and at the Si-SiO
2
 interface

● Time constants for reaching steady-state conditions as long as weeks have been observed
● So far hardly any systematic studies have been made

● We have established methods to measure:

1. The surface resistivity

2. The charge density at and close to Si-SiO
2
 interface (N

ox
) as functions of electric field and biasing

    time 

● Next:

1. Implement results in TCAD simulations

2. Extend measurements to different humidity and dose values

3. Check dependence on technology

 

 

Suggestions are welcome.
Thank you for your attention. 
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Back up
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Mobility parameterization model and data fit

μ
p
 vs E

 
before irradiation

●

●

●  

 

 

● The mobility of holes in the inversion layer is not constant as function of the E-field at the interface

- Non linear behavior of the drain-source current vs gate voltage

- Exponential decrease of the mobility as function of the E-field 

         

           

   

 

 

●

●

●  

 

 

μ
0
 
 
= 243 cm2/V·sec 

         Reliable V
th

 extraction from the parameterization model fit to the data.        

V
th 

= 5.068 V

I
ds

 vs V
gate

 before irradiation
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N
ox

: Field-enhanced charge injection
● Determination of the oxide-charge density (N

ox
) using the I

ds
 (V

gate
) curve before irradiation 

- V
th

 extraction from the model fit to the measurement cycle

- Calculation of V
fb

 from the V
th

  

      

       

 

 

μ
p
 vs E before irradiation-cycle

●

  

 

 

0 Gy V
th

 [V] V
fb

 [V] N
ox

 [1011 cm-2 ]

 1st up 5.0 4.8 3.8

 1st down 6.0 5.8 4.6

 2nd up 5.6 5.3 4.2

N
ox

 increases after bias 

stressing at V
gate

 = - 20 V for 

10 min. 

N
ox

 = C
ox

· (-V
fb

 + Φ
ms

)/(q
0
·A

g
)

I
ds

 vs V
gate

 before irradiation-cycle

V
th 

V
th 

V
th 
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