
TCAD simulated surface damage in proton irradiated strip sensors: Investigation of interface traps vs nonuniform 3-level model

25th RD50 Workshop, 19-21 Nov. 2014

T. Peltola¹⁾, J. Härkönen¹⁾

¹⁾Helsinki Institute of Physics, CMS Upgrade Project.

Outline

□ Simulated surface properties after proton irradiation

- Motivation: Measured & simulated CCE(x)
 - o Interface traps vs non-uniform 3-level model
- Simulations & comparison with measurements

□ 3D sensor simulations

- Motivation
- Simulated structure & electrical characteristics
- Hit position dependency of the signal

Summary

Simulated surface properties after proton irradiation

45

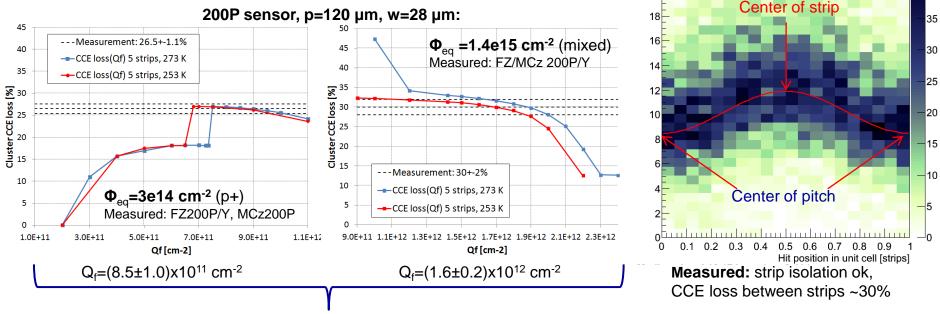
40

Test beam measured position

signal [

20

dependency of CCE [T. Mäenpää, 2013]


 $\Phi_{eq} = 1.4e15 \text{ cm}^{-2}$

MCz 200P, p=120 µm, w=28 µm

- **TCAD:** Synopsys Sentaurus
- Proton model: Tuned by R. Eber from the PTI-model

□ 3-level model within 2 µm of device surface + proton model in bulk:

- R_{int} & C_{int} in line with measurement (see back-up slides) also at high fluence & Q_f
- Can be tuned to equal bulk properties (TCT, V_{fd} & I_{leak}) with proton model
 → suitable tool to investigate CCE(x)

Preliminary
 parametrization of the
 model for fluence range
 3e14 – 1.5e15 cm⁻²

Type of defect	Level	$\sigma_{ m e}$	$\sigma_{ m h}$	Concentration
	[eV]	[cm ²]	[cm ²]	[cm ⁻³]
Deep acceptor	E _C - 0.525	1e-14	1e-14	1.189*Φ + 6.454e13
Deep donor	E_{v} + 0.48	1e-14	1e-14	5.598*Ф - 3.959e14
Shallow acceptor	<i>E_C</i> - 0.40	8e-15	2e-14	14.417* Φ + 3.1675e16

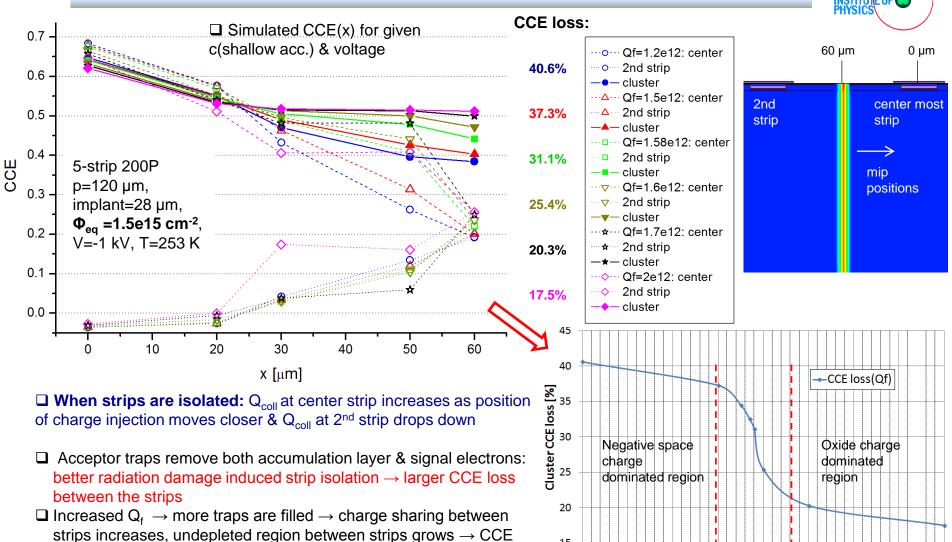
3-level model within 2 μm of device surface

From Delhi University contribution to Phase II talk of simulation WG:

The interface trap density N_{it} can play very important role in irradiated Si sensor,

- $[N_{it}] \sim [Q_F]$ [1]
- A significant number of N_{it} states are deep traps, affecting the SC near interface [1]
- R_{int} simulations for X-ray irradiated strip sensors indicates a prevalence in N_{it} of acceptor states

Model of N_{it} in Silvaco TCAD simulations:


1. We have assumed that $[N_{it}] = [Q_F]$ 2. For a given N_{it} , 60% of the states are deep traps (E_C -0.6eV) and 40% are shallow states (E_C -0.39eV) with $\sigma_n = \sigma_p = 1e-15cm^2[1]$

□ Promising results of simulated R_{int} for Silvaco ATLAS

Is it possible to replace 3-level model close to surface with N_{it} in Synopsys Sentaurus?
 Opportunity to study the depth distribution of trap levels responsible of observed CCE loss between strips?

[1] J. Zhang, DESY Thesis-2013, "X-ray radiation damage studies and design of a Si Pixel sensor for different fluences for science at the XFEL"

CCE(x): Simulation method

loss decreases

15

1.2

1.3

1.4

1.5

1.6

Qf · 1e12 [cm-2]

1.7

1.8

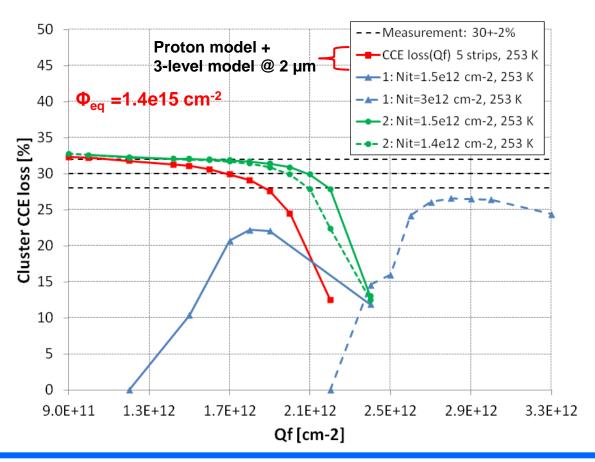
1.9

2

□ 1: parameters used in Silvaco

Type of defect	Level	$\sigma_{\rm e}$	$\sigma_{ m h}$	Density
	[eV]	[cm ²]	[cm ²]	[cm ⁻²]
Deep acceptor	<i>E_C</i> - 0.60	1e-15	1e-15	0.6*N _{it}
Shallow acceptor	<i>E</i> _C - 0.39	1e-15	1e-15	0.4*N _{it}

□ 5-strip 200P region 5 sensor @ V=-1 kV, T=253 K

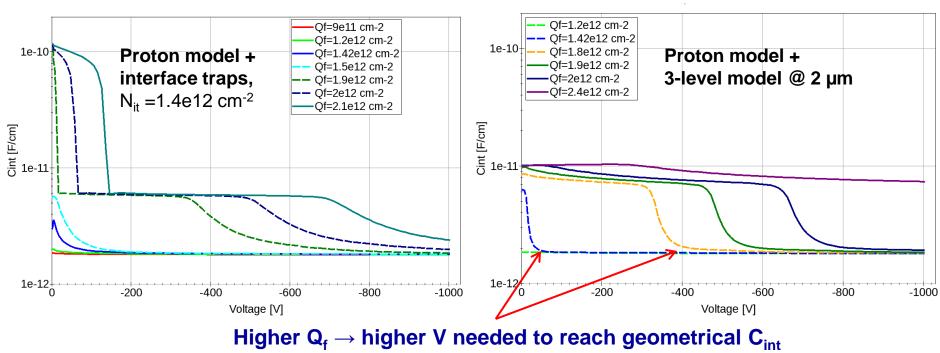

□ Simulated radiation damage:

- Proton model + interface traps from table 1(2)
- Proton model + 3-level model @ 2 µm from surface

 $\hfill\square$ 1: Measured CCE loss is not reproduced with realistic Q_f values

 Deep acceptors increase negative undershoots at strips with longer drift distances of carriers → CCE loss goes to zero also at high Q_f

□ 2: Measured CCE loss is reproduced @ $Q_f=(1.9 \pm 0.3)10^{12} \text{ cm}^{-2}$ for $N_{it}=1.5e12 \text{ cm}^{-2}$, $Q_f=(1.8 \pm 0.3)10^{12} \text{ cm}^{-2}$ for $N_{it}=1.4e12 \text{ cm}^{-2} \rightarrow$ possible to tune Q_f range of matching CCE loss


□ 2: 1 shallow acceptor

Type of defect	Level	σ _e	σ _h	Density
	[eV]	[cm²]	[cm²]	[cm ⁻²]
Shallow acceptor	<i>E_C</i> - 0.40	8e-15	2e-14	1.0*N _{it}

C_{int} : N_{it} vs non-unif. 3-level model @ Φ_{eq} = 1.4e15 cm⁻²

- Device structure corresponding to previous slide
- Dashed lines: Q_f values where CCE loss between strips matches measurement
- □ 3-level model @ 2 µm from surface:
- Geometrical value ~1.8 pF/cm reached within 0-400 V when CCE loss matches measurement
 Interface traps:
- Geometrical value reached within 180 V -1 kV when CCE loss matches measurement
- Over O(1) higher initial values at high Q_f

Measurement: C_{int} ~1.8 pF/cm reached at 0 V

CCE(x): Interface traps @ Φ_{eq} = 3e14 cm⁻²

□ 5-strip 200P region 5 sensor @ V=-1

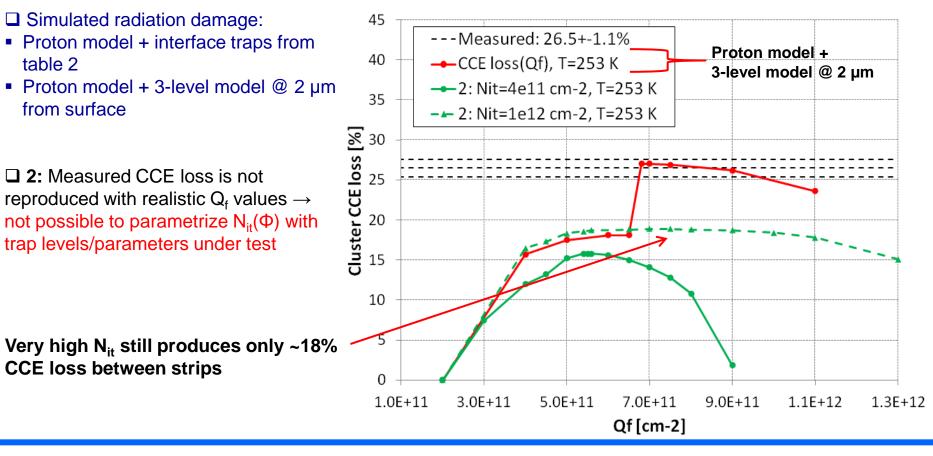

kV, T=253 K

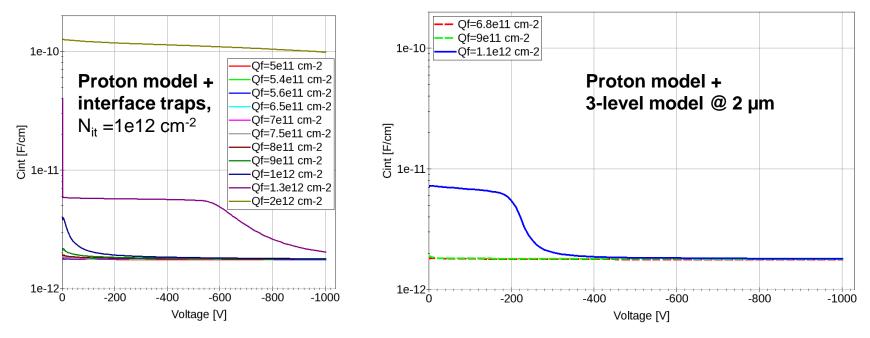
table 2

□ 2: 1 shallow acceptor

Type of defect	Level	$\sigma_{\rm e}$	$\sigma_{ m h}$	Density
	[eV]	[cm ²]	[cm ²]	[cm ⁻²]
Shallow acceptor	<i>E</i> _C - 0.40	8e-15	2e-14	1.0*N _{it}

 C_{int} : N_{it} vs non-unif. 3-level model @ Φ_{eq} = 3e14 cm⁻²

Device structure corresponding to previous slide


□ 3-level model @ 2 µm from surface:

Geometrical value ~1.8 pF/cm reached at 0 V when CCE loss matches measurement

□ Interface traps:

Geometrical value reached at low V up to Q_f =1e12 cm⁻² (no match with measured CCE loss)

□ Measurement: C_{int} ~1.8 pF/cm reached at 0 V

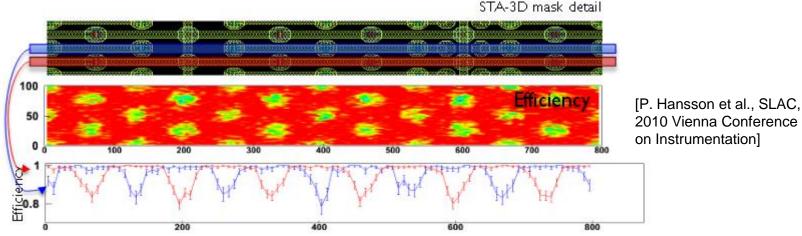
Conclusion from slides 7-10: Deeper distribution of shallow acceptors reproduces measured CCE loss between strips & C_{int} more closely

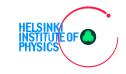
3D sensor simulations

Timo Peltola, RD50 Workshop, 21 Nov 2014

Columnar 3D sensor simulations: Motivation

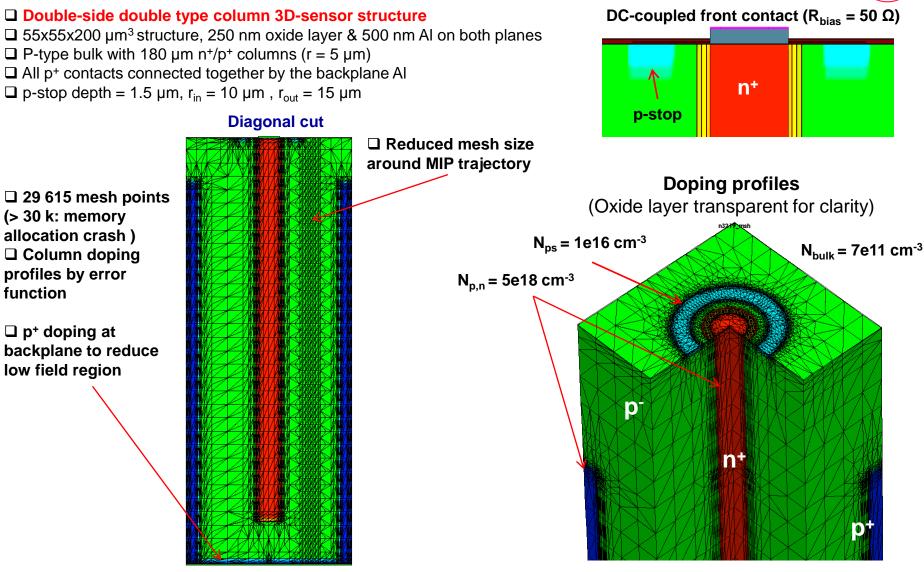
□ 3D sensors: Most promising choice for extremely high fluence environments. Now populate 25% of the ATLAS IBL

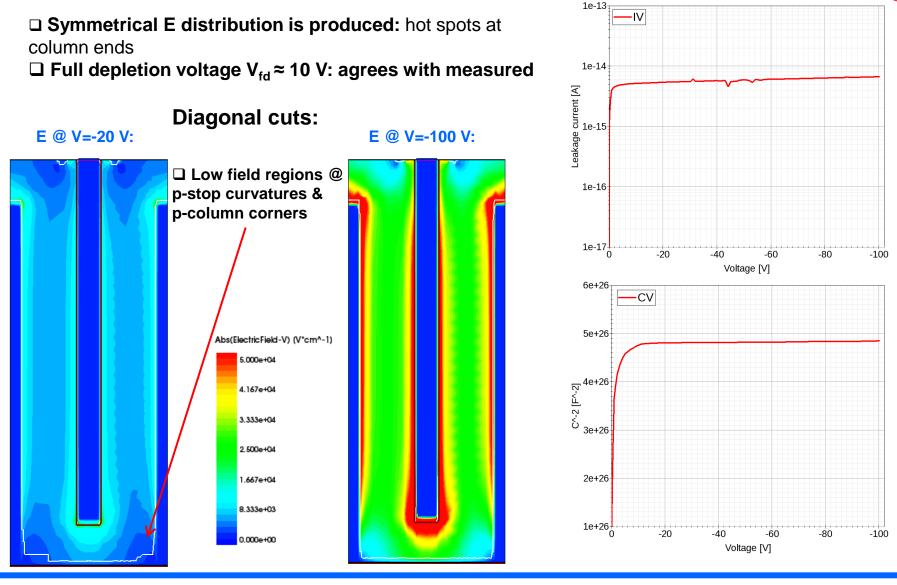

 \Box 3D geometry: Large signal & reduced trapping probability \rightarrow higher radiation tolerance

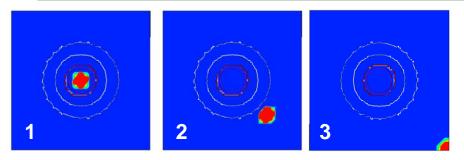

Downsides of 3D sensors include hit position dependent signal size:

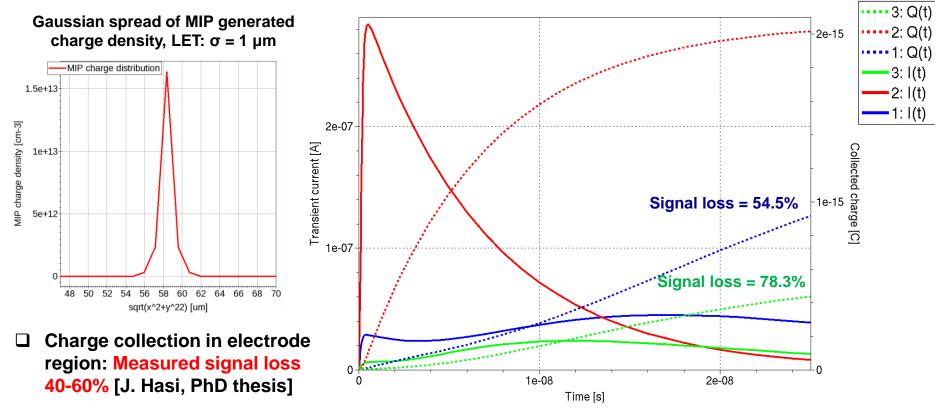
Electrodes are parallel to track (B=0, 0°) at normal incidence

2010 Vienna Conference on Instrumentation]


□ TCAD simulations can also be applied for the design optimization of 3D sensors Possible to simulate hit position dependence of 3D sensor with realistic thickness?


Double type column 3D-sensor simulations: structure


Double-column 3D-sensor: Electrical characteristics


Timo Peltola, RD50 Workshop, 21 Nov 2014

Double-column 3D-sensor: Signal hit position dependency

- □ Hit position 1: n+ column
- □ Hit position 2: halfway between columns
- □ Hit position 3: p+ column
- \Box Operation @ V = -100 V

□ Long collection time: to be investigated (mesh size, collection electrode parameters?)

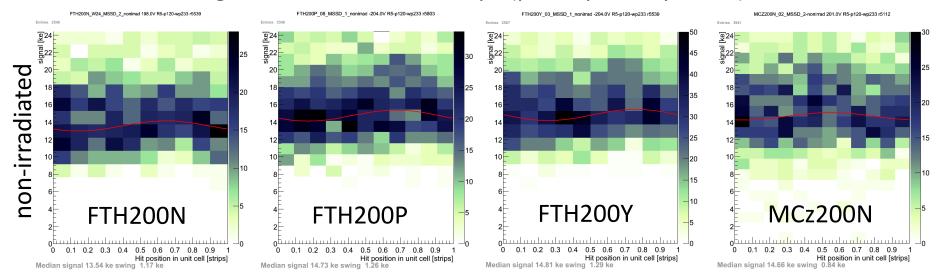
HELSINK INSTITUTE O PHYSICS

2-level model + interface traps & non-uniform 3-level model were applied for CCE(x) & C_{int} simulations in Sentaurus TCAD
 Interface traps:

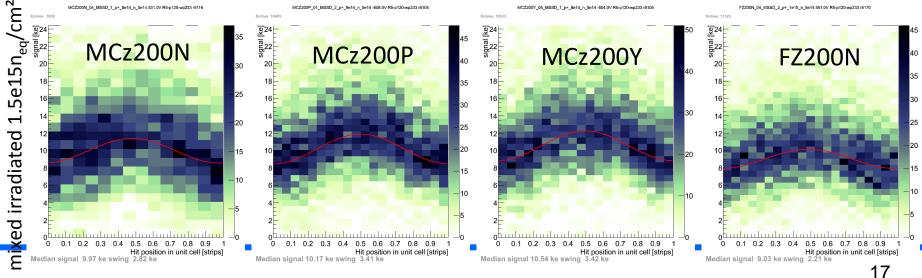
 Deep & shallow acceptors do not reproduce agreement with measurement for the investigated fluence & Q_f range

• One shallow acceptor reproduces measured CCE(x) @ Φ_{eq} = 1.4e15 cm⁻², no match at lower fluence \rightarrow high initial C_{int} values & geometrical value reached only after > 180 V

□ Interpretation: Deeper distribution of shallow acceptors reproduces measured surface properties more closely

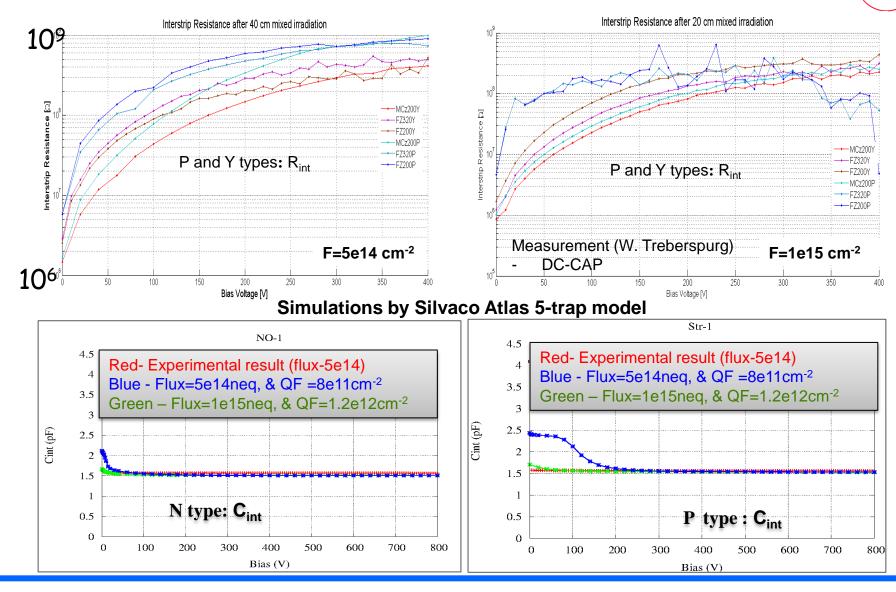

□ Double-side double type column 3D-sensor simulated succesfully

Hit position dependence reproduced: over 50% smaller charge collected from column hit


Further investigation needed for unexpectedly long collection times

Backup: SiBT measured CCE loss between strips

Signal loss in-between strips ($p=120\mu m$, $w/p\sim0.23$)

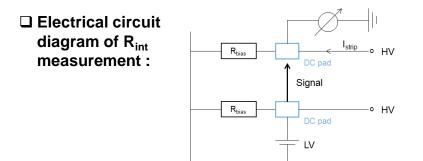


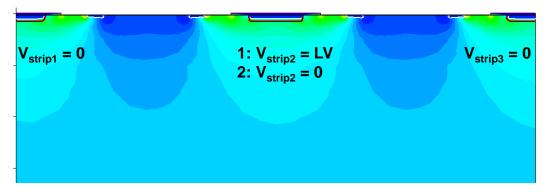
No loss before irrad.; after irrad. ~30% loss; all technologies similar [Phase-2 Outer TK Sensors Review]

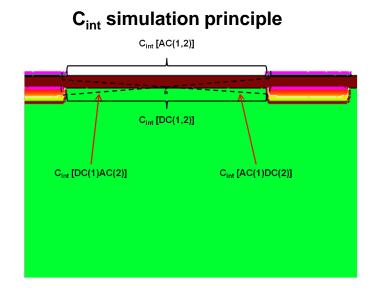
Timo Peltola, RD50 Workshop, 21 Nov 2014

Backup: Measured R_{int} & C_{int}

Timo Peltola, RD50 Workshop, 21 Nov 2014


NSTITU PHYSIC Backup: simulated R_{int} & C_{int}


- □ 3 strip structure, $V_{strip1} = V_{strip3} = 0$, $V_{strip2} = LV$ and 0 V □ V = -HV at the backplane
- \square Interstip resistance (R_{int}) is defined as (Induced Current Method):


$$R_{int} = \frac{V_2(LV)}{\frac{I_1(LV) + I_3(LV)}{2} - \frac{I_1(0) + I_3(0)}{2}}$$

 \square R_{int} is plotted as a function of applied voltage V

R_{int} simulation principle

$$C_{int} = 2^{*}[AC(1,2)+DC(1,2)+AC(1)DC(2)+DC(1)AC(2)]$$