Edge-TCT studies of irradiated HVCMOS sensor (an update)

G. Kramberger

Jožef Stefan Institute, Ljubljana
on behalf of HVCMOS collaboration

Motivation

Thanks for the first two speaker, which saved some of my minutes...
 (have a look also our presentation at 24th RD50 meeting)

A single cell of 125 x 33 μm^2 was investigated – output to readout after the charge sensitive amplifier.

Not ideal (not observing induced current), but good enough!

Single cell readout

Sample and technique

- ➤ A single detector was irradiated in steps with neutrons to 2, 5e14 cm⁻² in steps (80min@60C annealing in between)
- > Particulars Scanning-TCT system used:1060 nm pulse laser, 350 ps, 500 Hz
- At the moment the chip can not be actively cooled with measurements at 24°C
- We FWHM of the beam was around 10 μm (although is seems better with HVCMOS around 7-8 μm see our presentation at 24th RD50 meeting)

XY scan at different V_{bias} and fluences

Charge collection profiles along the depth at the pixel center

5e14 cm⁻²

80

100

position [µm]

- Tail coming from diffusion before irradiation, still some after 2e14 cm-2, almost completely disappears at 5e14 cm-2
- Weak dependence of signal on voltage (beam contained in the field region)

Profile width (FWHM) is a measure of charge collection region (diffusion + depleted),
 but the width of the beam should be taken into account

Effective doping concentration in p substrate

- Dependence of depleted region on substrate bias for constant space charge
 - \Box At $V_{sub}=0$ V it is assumed that charge is collected by diffusion (note the FWHM of the beam)
 - Any additional bias depletes the certain amount which adds to the diffusion contribution:

$$\Delta d = \frac{2\varepsilon\varepsilon_0}{e_0 N_{eff}} \sqrt{V_{sub}}$$

Effective doping concentration is extracted from the fit for each fluence!

The effective doping concentration seems to decrease with fluence – depletion region penetrates deeper after irradiation! This points to effective acceptor removal – not conclusive enough to claim B removal.

CCE for minimum ionizing particle

Integral of charge collection profile is proportional to the charge generated by minimum ionizing particle!

$$Q_{mip} \propto " = \int_{0}^{W} Q(y) \, dy"$$

- Signals Q_{max}=Max(Q(y)) for different fluences were normalized to the same value – trapping should not play a major role at that fluences
- > <Q_{nirr}> (60 V) = 1

- The difference at high applied bias voltages is smaller
- The performance is far better then expected, owing to the wider depleted region
 with fast LHC speed electronics it should be better for irradiated sensors
- Almost no difference between 2e14 cm⁻² and 5e14 cm⁻² at 60 V.

Leakage current

 Temperature was not controlled/stabilized, but the room temperature was always the same 24+/-0.5C

Shapes of the amplifier response

delayed 50% crossing points in indication of contribution from diffusion

- Changes in output radiation induced?
- 50% crossing point of the max. amplitude can not be used for irradiated samples – small diffusion component/changes in amplified output

Conclusions

Edge-TCT was performed on HVCMOS2FEI4 structure using a cell amplifier output after initial amplifying stage

- Irradiation with neutrons decreases the depth from which the carrier are collected:
 - □ the depleted region **increases** with irradiation at the same bias voltage pointing to reduced N_{eff} (initial acceptor removal ?)
 - □ The "diffusion region" decreases with irradiation almost non-existent at 5e14 cm⁻²
 - □ The combined effect may be beneficial with LHC speed electronics
- Estimated charge collection efficiency after irradiation to 5e14 cm⁻² for ⁹⁰Sr changes only slightly for slow amplifier (it may increase with LHC speed electronics).
- Leakage current increase is compatible with expectations