Measurements of LGAD segmented devices

<u>Emanuele Cavallaro</u> – Ivan Lopez Jörn Lange – Sebastian Grinstein

> **25th RD50 Workshop** 19-21 November 2014

Outline

Brief introduction on LGAD technology

Some words on LGAD segmented devices

TCT measurements on strips devices

- Setup description
- · Results

Measurements on **pixels devices**

- Setup description
- FEI3 results
- FEI4 results

Summary

Introduction

- Low Gain Avalanche Detector concept:
- $\cdot n on p \rightarrow n^+ p^- p^- p^+$
- High electric field volume at the n^+ p^+ junction
 - Avalanche region
- · Gain ~ 10
 - · Linearity preserved w/ primary charge

Advantages of LGAD devices as HEP detectors:

- · Improved signal to noise ratio
 - · Compensating radiation worsening effect
- · Lower bias voltage required
- · Opportunity to build thinner detectors with same charge collection
 - · Reduced material budget & timing devices

Details on the LGAD technology on Pablo Fernandez' talk

Diodes LGAD production

The Centro Nacional de Microelectrónica in Barcelona (**CNM**) is developing LGAD technology and producing LGAD devices

A production run of pure diodes successfully showed the **charge multiplication** (CM) effect even **at low voltages**

The multiplication effect strongly depends on the electric field profile on the multiplication region Next step is to test this technology on segmented devices

Segmented LGAD devices

A run of segmented devices has been produced by CNM It includes:

- Strips of different sizes
 - $\cdot \;\;$ Both AC and DC coupled
- FEI4 pixels devices
- FEI3 pixels devices
- Others pixels devices
- Big and small diodes

Different strips layout w/ 80 µm pitch:

Emanuele Cavallaro - 25th RD50 Workshop

Run 6827

Strip = 2

Metal = 28

AC 6

Strip = 48

Metal = 52

AC 9

Strip = 62

Metal = 66

FEI4-3

Without

Guard rings

/ith Gua

FEI3-3

Without

ard rin

Strip = 32

Metal = 40

AC1

Strip = 32

Metal = 40

FFI4-4

Withou

Guard rings

FEI3-

Withou

Guard ri

9 6

6

letal = 20

AC 4

Strip = 48

Metal = 44

AC 7

Strip = 62 Metal = 58

FEI4-2

With Guard

rings

FE13-2

Metal = 48

Metal = 62

Strip = 32 Aetal = 40

FFI4-1

rings

Vith Guard

TCT measurements on strips

Goal:

- Verify CM by comparing LGAD with reference w/o CM
- Study uniformity with surface scan

TCT setup in Hamburg

Thanks a lot to UHH colleagues (M. Centis, P. Buhmann, T. Pöhlsen, C. Scharf)

Laser illumination, Focus $\sigma \sim 3-8 \ \mu m$ - 660 nm: 3 μm penetration \rightarrow surface

- **1060 nm**: 1 mm penetration \rightarrow like MIP

Measured at room temperature 2-3% charge-injection reproducibility after warm-up

Measured Devices	n⁺ impl. width	CM p⁺ impl. width	Diffus. of N implant	Max. Volt.
6894-W14-AC7 (ref.)	62 µm	44 µm	Deep	300 V
6827-W14-AC7 (LGAD)	62 µm	44 µm	Deep	300 V
6827-W14-AC1 (LGAD)	24 µm	6 µm	Deep	150 V
6827-W14-AC2 (LGAD)	24 µm	6 µm	Deep	600 V
6827-W12-AC11 (LGAD)	32 µm	14 µm	Shallow	200 V

TCT Waveforms (660 nm back illumination)

TCT: Charge Across Strips (1060 nm Front)

- Charge from waveform integral (50 ns)
- \bullet Scan through 20 μm hole in Al in strip centre
- \rightarrow lower signal in centre due to residual reflections
- 6827-W14-AC7 (LGAD) and 6894-W14-AC7 (ref.) almost same charge
- 6827-W14-AC2 (LGAD) and 6827-W12-AC11 (LGAD) measured in different month than others
- \rightarrow laser intensity might vary, better focus (i.e. less reflections)
- \rightarrow slightly higher charge (~20%) probably due to different laser conditions

TCT: Charge Across Strips (1060 nm Front)

- Charge from waveform integral (50 ns)
- \bullet Scan through 20 μm hole in Al in strip centre
- \rightarrow lower signal in centre due to residual reflections
- 6827-W14-AC7 (LGAD) and 6894-W14-AC7 (ref.) almost same charge

• 6827-W14-AC2 (LGAD) and 6827-W12-AC11 (LGAD) measured in different month than others

 \rightarrow laser intensity might vary, better focus (i.e. less reflections)

 \rightarrow slightly higher charge (~20%) probably due to different laser conditions

TCT: Charge vs. Voltage (1060 nm front)

No change of charge with voltage above 50 V

Pixel assembly and setup

An FEI3 and an FEI4 from w14 run 6827 tested FEI3 and FEI4 are front-end chips for pixel devices Devices bump-bonded and assembled @ IFAE Collected charge information in Time Over Threshold units

Preamplifier, amplifier and threshold are tunable, typical values are:

- FEI3 TOT = 30 for a MIP with Thr= $3200e^{-1}$
- FEI4 TOT = 8 for a MIP with Thr= $3200e^{-1}$

TOT to charge conversion possible

Readout chain: FEI3/FEI4 on PCB ↔ USBPix board ↔ PC

MIP Setup:

Source $\rightarrow \beta$ from ⁹⁰Sr

Trigger \rightarrow plastic scintillator + photomultiplier

FEI3 measurements

Charge collection measurements

Direct comparison of an LGAD device and a reference one - only difference is the p^+ multiplication layer

Pre-measurement preparation:

IV curve

- · Check breakdown voltage and current level
- Tuning Threshold = $3200e^{-1}$ and TOT = $30 @ 20ke^{-1}$
 - Set the two devices in the same working condition

Emanuele Cavallaro - 25th RD50 Workshop

FEI3 measurements

The measurement and analysis procedure:

- Performing ⁹⁰Sr source scan
- Convert from TOT to electric charge
- Merge the hits into clusters
- Fit the cluster charge distribution with a Landau function

Charge on the LGAD compatible with the reference within the charge calibration uncertainty

Cluster Charge [e]

No charge multiplication observed on the FEI3 device

10

20

30

40

e0.09 Butries 80.0

0.07

0.06

0.05

0.04

0.03

0.02

0.01

FEI4 measurements

IV curve

Emanuele Cavallaro - 25th RD50 Workshop

No charge multiplication observed on the FEI4 device

<u>Summary</u>

Neither the pixel nor the strip devices of run 6827 - W12/14 showed any charge multiplication

Also other groups observed no or minimal charge multiplication for this run

- W8 (50µm epitaxial) diodes Hartmut Sadrozinski, University of California Santa Cruz
- W13 (FZ Standard n+ impl.) strips *Riccardo Mori, Universität Freiburg*

The promising results obtained on the diodes from run 6474, a charge multiplication of a factor 10 at bias voltages greater than 100V, have not been confirmed on any of these devices

Many differences between run 6474 and run 6827 production

 \rightarrow The lack of CM may be unrelated with segmentation

<u>Outlook</u>

- Investigate the differences between segmented run 6827 and diodes run 6474
- New production already ongoing
 - W/ segmented devices
 - More similar to run 6474 *see Pablo Fernandez' talk*

Thanks for your attention