
Ultra-Fast Silicon Detector  
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This report is a summary of what was shown at IEEE. 
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Nicolo Cartiglia  

 

With 

LGAD group of RD50 



   

The “Low-Gain Avalanche Detector” project 
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Is it possible to manufacture a silicon detector that looks like a normal pixel  

or strip sensor, but 

 with a much larger signal (RD50)? 

 

 

Poster Session IEEE N26-13 

- 730 e/h pair per micron instead of 73 e/h 

- Finely segmented 

- Radiation hard 

- No dead time 

- Very low noise (low shot noise) 

- No cross talk 



   

How can we progress? Need simulation 
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We developed a full simulation 

program to optimize the  

sensor design, WeightField2, 

(http://cern.ch/weightfield2 ) 

  

It includes: 

 

• Custom Geometry 

• Calculation of drift field and 

weighting field 

• Currents signal via Ramo’s 

Theorem 

• Gain 

• Diffusion 

• Temperature effect 

• Non-uniform deposition  

• Electronics 

Poster Session IEEE  N11-8 
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Signals in no-gain diode and LGAD sensors 
(Simplified model for pad detectors) 
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Slew rate as a function of sensor thickness 

Weightfield2 

simulation 
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300 micron: 

~ 2-3 improvement 

with gain = 20 

Significant improvements in time resolution require thin detectors 

Large slew rate, good time resolutions 
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First Measurements and future plans 

LGAD laboratory measurements 

•  Gain 

•  Time resolution measured with laser signals 

 

LGAD Testbeam measurements 

• Landau shape at different gains 

• Time resolution measured with MIPs 
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Laser Measurements on CNM LGAD 

We use a 1064 nm picosecond laser to emulate the signal of a MIP 

particle (without Landau Fluctuations) 

The signal output is read out by either a Charge sensitive amplifier or 

a Current Amplifier (Cividec) 
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st ~ 140 ps @ 800 Volts 
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Testbeam Measurements on CNM LGAD 

In collaboration with Roma2, we went 

to Frascati for a testbeam using 500 

MeV electrons 
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300 micron thick, 5 x5 mm pads 

Gain @ 800V

Gain @ 400V
~

11.2

6.5
~ 1.7

The gain mechanism 

preserves the Landau 

amplitude distribution of 

the output signals 

As measured in the lab, the gain ~ 

doubles going from 400 -> 800 Volt. 
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Testbeam Measurements on CNM LGAD 

Time difference between two LGAD detectors crossed by a MIP  
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st ~ 190 ps @ 800 Volts 

Tested different types of electronics (Rome2 SiGe, Cividec), 

Not yet optimized for these detectors  
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Present results and future productions  
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With WF2, we can reproduce very well the laser and testbeam results. 

 

Assuming the same electronics, and 1 mm2 LGAD pad with gain 10, we 

can predict the timing capabilities of the next sets of sensors. 

Current Test beam results and 

simulations 

Next prototypes 

Effect of 

Landau 

fluctuations 
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Effect of Landau Fluctuations on the time resolution 
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The effect of Landau fluctuations in a MIP signal are degrading the time 

resolution by roughly 30 % with respect of a laser signal 

Current Test beam results and 

simulations 

Next prototypes 
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Signal from a 50 micron-epi LGAD 

Trace from a 50 micron epi 

WF2, 50 micron, 550V 

Needs gain = 14! 

~ 15 mV (amplifier gain = 100)  

5 ns  

5 ns  
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Splitting gain and position measurements 
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The ultimate time resolution will be obtained with  a custom ASIC. 

However we might split the position and the time measurements 



 UFSD – Summary 
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• The internal gain makes them ideal for accurate timing studies 

 

• We measured 140 ps resolution with laser and 190 ps with MIPS 

(300 mm sensors) 

 

• We are manufacturing thin LGAD optimized for time resolution. 

With non-optimized electronics we predict <50 ps resolution for a 

50 mm thick, 1  mm2 pad. 

 

• Ultimate time resolution (~10-20 ps) requires custom ASIC design. 

 

Timescale: 

300- and 200- micron sensors: Winter 2014 

100- and 50- micron sensors:  Summer 2015 
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This work was developed in the framework of the CERN RD50 

collaboration and partially financed by the Spanish Ministry of 

Education and Science through the Particle Physics National Program (F 

P A2010−22060−C 02−02 and FPA2010 − 22163 − C02 − 02).  

 

The work at SCIPP was partially supported by the United States 

Department of Energy, grant DE-FG02-04ER41286.  
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Backup 
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Laser split into 2 

Noise 
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Detector Bias 

Bias Resistor 

Detector Cdet 

CBias 

RBias 

CC RS 

Digitizer 

2 sensors 

CDet 

RBias 

RS iN_Det 

iN_Amp 

eN_Amp 

eN_S 

iN_Bias 

Detector 

Bias 

Resistor 

Series 

Resistor 
Amplifier 

Real life Noise Model 
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vf
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Det

This term, the detector current shot noise, depends on the gain 

This term dominates for 

short shaping time 
2eI

Det
* Gain Shot noise: 

low gain 

ENF = kG+ (2-
1

G
)(1- k)

k = ratio h/e gain 

Excess noise factor: 

low gain, very small k 



Time walk and Time jitter 

Time walk: the voltage value Vth is 

reached at  different times by 

signals of different amplitude 

Jitter: the noise is summed to the 

signal, causing amplitude 

variations 

Due to the physics of signal formation 

 

Due to Landau fluctuations 

Mostly due to electronic noise 

 

Sum of noise sources 
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How to make a good signal 

Signal shape is determined by Ramo’s Theorem: 

i µqvE
w

Drift velocity Weighting field 

A key to good timing is the uniformity of signals: 

Drift velocity and Weighting field need to be as uniform as possible  



Non-Uniform Energy deposition 
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Landau Fluctuations cause two major effects: 

- Amplitude variations, that can be corrected with time walk 

compensation 

-  For a given amplitude, the charge  deposition is non uniform. 

These are 3 examples of this effect: 


