# **TPA-TCT**

A novel Transient-Current-Technique based on the Two Photon Absorption process 25th RD50 Workshop @ CERN

P. Castro<sup>1</sup>, M. Fernández<sup>1</sup>, J. González<sup>1</sup>, R. Jaramillo<sup>1</sup>, M. Moll<sup>2</sup>, R. Montero<sup>3</sup>, F. R. Palomo<sup>4</sup>, I. Vila<sup>1</sup>

<sup>1</sup>Instituto de Física de Cantabria (CSIC-UC) <sup>2</sup>CERN <sup>3</sup>Universidad del Pais Vasco (UPV-EHU) <sup>4</sup>Universidad de Sevilla (US)









UNIVERSIDAD DEL PAÍS VASCO -EUSKAL HERRIKO UNIBERTSITATEA

### Scope of this talk



2

 Here, this talk focused on the experimental results from the first proof-of-concept measurement to study the TCT currents induced by TPA in an RD50like non-irradiated standard PiN diode.

- More details on the basics of the TPA process can be found in this talk by F.R. Palomo (<u>link</u>)
- More details on the code TRACS (TRansient Current Simulator) used to compute the theoretical current waveforms in P. de Castro talk (link)

# Outline



- Motivation and challenges for a TCT technique based on the Two- Photon- Absortion (TPA) process.
- Femto-second laser setup:
  - \_ Signal size and shape vs. laser power.
  - \_ Determining the charge carriers generation volume.
- Experimental data vs. simulation for a z-scan in a PiN diode.
- Conclusions and outlook

#### Motivation for a TPA-based TCT technique

# "A picture is worth a thousand words"



Photography: Ciceron Yanez, University of Central Florida

TPA-TCT is a way to **generate very localized electron-hole pairs** in semiconductor devices (microscale volume).

TPA-TCT simplifies the arrangement to inject light into the device and the unfolding of the device internal Electric field and other relevant parameters of the theoretical model.

TPA-TCT could provide a novel experimental tool for studying the currently under development small pixel size detectors.

# **TPA-TCT Proof-of-concept Challenges**



- 1. Confirm the generation of TPA induced current in a silicon diode with the appropriate laser power.
- 2. Determine the dimensions of the charge-carrier's generation volume.
- 3. Compare the experimental TCT current waveforms against the theoretical simulated current waveforms (access its potential as experimental tool to discriminate between different theoretical models).

### **Experimental arrangement (1)**

Pulsed femto laser (at normal incidence) entering the diode junction side (conventional top-TCT configuration)

**OPTICAL BENCH FEMTO LASER** CCD BS OSC IA FSW S BS RL OBJ AMP **OPA** VNDF IF TS PD SSA & DO FROG 000 Sourcemeter 1.1.1.1 TB RFAD O

Laser  $\lambda \sim 1300 \text{ nm}$ P ~ 50-100 pJ  $\Delta T \sim 240 \text{ fs}$ Rate ~ 1 kHz  $\Lambda f \sim 11 \text{ nm}$ Microfocus X100 Objective f 100 mm lens 2.5 GHz DSO



# **Experimental Arrangement (2)**



7





DUT CNM N-IN-P DIODE LGAD PIN REFERENCE DIODE Ref - W9F9





# TPA -> Charge vs z -> plateau (Observed behavior)

– SPA (Standard TCT) -> Charge vs z -> no z dependence.

# Z-Scan: vertical displacement of the DIODE

Evidence of TPA-TCT (1)

perpendicularly to the laser beam (z axis)





# Evidence of TPA-TCT (2)



9

 Pure quadratic dependence between the Signal Charge and the laser power.



# Which is the adequate laser power ?



 Similar pulse shapes for laser pulses up to a power of 60-80 pJ, for higher power values TCT waveform gets wider and wider (likely due to plasma effects).

# **TPA-TCT Proof-of-concept Challenges**



- Confirm the generation of TPA induced current in a silicon diode with the appropriate laser power.
- 2. Determine the dimensions of the charge-carrier's generation volume.
- 3. Compare the experimental TCT current waveforms against the theoretical simulated current waveforms (assess its potential as experimental tool to discriminate between different theoretical models).

### **TPA-Induced charge-carriers volume**



- The laser's volume of excitation (e-h pair creation) is fully determined by the laser parameters ( $\lambda$  and W<sub>0</sub>) and the TPA cross-section in Silicon ( $\beta$ )
- In our case,  $\lambda$  and  $\beta$  are known, a fit of the raising edge of the charge z-scan profile determines  $W_0$



### **TPA-Induced Charge-carriers volume (2)**



13

# r spot size → 1σ~0.8 µm & 2σ~3.4 µm z spot size → 1σ~13 µm & 2σ~60 µm



# **TPA-TCT Proof-of-concept Challenges**





Confirm the generation of TPA induced current in a silicon diode with the appropriate laser power.



- Determine the dimensions of the charge-carrier's generation volume.
- 3. Compare the experimental TCT current waveforms against the theoretical simulated current waveforms (assess its potential as experimental tool to discriminate between different theoretical models).

# TCT Waveforms: 20um focus depth







CNM N-IN-P DIODE LGAD PIN REFERENCE DIODE Ref - W9F9 (500 V bias)

Single Photon Absorption red laser TOP-TCT (hole injection)

# TCT Waveform: 97 um focus depth





CNM N-IN-P DIODE LGAD PIN REFERENCE DIODE Ref - W9F9 (500 V bias)

Electrons and holes TCT current contribution distinct from the TCT current shape.



#### 0.05 0.00 -0.05Transient Current [a.u.] -0.10 $P(\pi)$ -0.15NOT a fit just a P<sup>+</sup> simulation -0.20 normalization -0.25 Measurement -0.30Simulation **CNM N-IN-P DIODE** -0.35L 2 4 6 8 10 LGAD PIN REFERENCE DIODE Time [ns] **Ref - W9F9 (500 V bias)**

Around the minimal pulse width, similar arrival times for electrons and holes

# TCT Waveform: focus depth 160um





TCT wavefrom gets wider again, trailing edge dominated by electrons now.

# TCT Waveform: focus depth 278um





SPA - red laser bottom-TCT like signal (electron injection)

### **TPA-TCT:** Distinct Electron & Hole dynamics



- Out of the box simulation (no fit): 500 V, RC 17pC,
  Laser waist 0.95 um, Vdep 50 Volts
- Excellent agreement between data (left) and TRACS simulation.

# **TPA-TCT Proof-of-concept Challenges**





- Confirm the generation of TPA induced current in a silicon diode with the appropriate laser power.
- Determine the dimensions of the charge-carrier's generation volume.



Compare the experimental TCT current waveforms against the theoretical simulated current waveforms (assess its potential as experimental tool to discriminate between different theoretical models).

# **Conclusions and Outlook**

- We have completed the successful proof-of-concept of a novel F (A Transient-Current-Technique based on the Two-Photon-Absortion (TPA) process
- Excellent agreement between the experimental data and the simulation points to its potential as tool for disentangling different theoretical models.
- Opens up the possibility of a new range of opportunities for boosting the scope of TCT techniques:
  - \_ More accurate 3D mapping of E<sub>field</sub>.
  - \_ Simpler unfolding methods.
  - \_ More accurate study of pixelated sensors.
  - \_ Less relevance of metal-induced beam reflections.
- But, still a lot of work and challenges ahead to make it a reliable, accessible and practical diagnostic tool.

# THANK YOU !





# Generation Volume (knife-scan)

Transversal knife-scan



*Laser waist < than 1 um (accuracy limited by motor displacement resolution)*