Search for new physics in the $b \rightarrow c\overline{c}s$ decays with LHCb detector at LHC

Morgan MARTIN*

Supervisor: Jibo HE*

Student Session

* European Organisation for Nuclear Research (CERN), Geneva Switzerland

August 12, 2014

Beyond Standard Model

Indirect search:

 Sensitive process of virtual particles (LHCb)

Direct search:

 New particles with high energy (ATLAS, CMS, ...)

$$B_{s}^{0} \left(\begin{array}{c|c} b \\ b \\ w \\ s \\ t, c, u \\ s \\ t, c, u \\ b \end{array} \right) \overline{B}_{s}^{0} \qquad \underbrace{\text{Constrain}}_{\text{CKM Matrix}} \qquad V_{CKM} = \left(\begin{array}{c|c} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{array} \right)$$

Mixing induced CP violation in B_s^0 : ϕ_s

• We want to measure $\phi_s \equiv \phi_M - 2\phi_D = -2\beta_s + \delta^{NP}$

$$\beta_s \equiv \arg(-\frac{V_{ts}V_{tb}^*}{V_{cs}V_{cb}^*})$$
; $\phi_M = 2\arg(V_{ts}V_{tb}^*)$; $\phi_D = \arg(V_{cs}V_{cb}^*)$

•
$$\mathcal{A}_{CP}(t) = \frac{\Gamma[B^0_s(t) \to f_{C\mathcal{P}}] - \Gamma[B^0_s(t) \to f_{C\mathcal{P}}]}{\Gamma[\overline{B^0_s}(t) \to f_{C\mathcal{P}}] + \Gamma[B^0_s(t) \to f_{C\mathcal{P}}]} \propto sin(\phi_s)sin(\Delta m_s t)$$

• $\phi_s = -0.0364 \pm 0.0017$ rad (SM global fit) • $\phi_s = 0.07 \pm 0.09 \pm 0.01$ rad (LHCb latest result)

b quark production at LHC

 In high energy collisions, bb pairs are produced predominantly in forward or backward directions

LHCb detector: single-arm forward spectrometer

• 2011 \sqrt{s} \sim 7 TeV 1 fb⁻¹ and 2012 \sqrt{s} \sim 8 TeV 2 fb⁻¹

LHCb work flow

• Trigger: Select interesting events

- L0 trigger (hardware): High transverse momentum
- HLT (software): Full reconstruction

 Stripping: Central pre-selection of decays under study

Analysis methodology to ϕ_s

 $\mathcal{A}_{CP}(t) = \frac{\Gamma[\overline{B_{S}^{0}}(t) \to f_{C\mathcal{P}}] - \Gamma[B_{S}^{0}(t) \to f_{C\mathcal{P}}]}{\Gamma[\overline{B_{S}^{0}}(t) \to f_{C\mathcal{P}}] + \Gamma[B_{S}^{0}(t) \to f_{C\mathcal{P}}]} \propto sin(\phi_{s})sin(\Delta m_{s}t)$

- Trigger and select candidates
 - long lifetime
 - high transverse momentum (P_T)
- Tag initial flavour (B_s^0 or \overline{B}_s^0 ?)
- Measure their decay time $t = \frac{\ell \times m}{p}$
- Angular analysis (optional)

$B_s^0 ightarrow \eta_c \phi$

• Goal:

- reduce the statistical uncertainty on ϕ_s
 - \Rightarrow add a new decay mode
- Never studied before
- Branching Ratio
 - $\mathcal{B}(B^0_s \to J/\psi \ (\mu^+\mu^-) \ \phi \ (KK)) \simeq 3.2 \times 10^{-5}$
 - $\mathcal{B}(B_s^0 \to \eta_c \text{ (4h) } \phi \text{ (KK))} \simeq 2.3 \times 10^{-5} \text{ (estimate)}$
- Challenge
 - J/ ψ ($\mu^+\mu^-$) ϕ (KK): easy to select
 - η_c (4h) ϕ (*KK*): 6 hadrons in the final state \Rightarrow Harder to select
- Angular analysis?
 - $B_s^0 \rightarrow J/\psi \phi$: Mixing CP-even/odd \Rightarrow Angular analysis
 - $B_s^0 \rightarrow \eta_c \phi$: CP-even \Rightarrow No angular analysis

Selection efficiency

- MC samples were generated: $B_s^0 \rightarrow \eta_c$ (4h) ϕ (*KK*)
- Signal reconstruct $B_s^0 \to \eta_c (KK\pi\pi) \phi (KK)$: Current Stripping Line

•
$$\epsilon_{\text{Strip}} = (8.63 \pm 0.13) \times 10^{-2}$$

Some efficiency of Stripping Line cut

K ⁺			%		
P _T [MeV]	>	750.0	79.57	±	0.18
κ-			%		
P _T [MeV]	>	750.0	79.45	±	0.19
π ⁺			%		
P _T [MeV]	>	750.0	66.05	±	0.23
π			%		
P _T [MeV]	>	750.0	65.79	±	0.23
ης			%		
$\Sigma P_T (K^+, K^-, \pi^+, \pi^-) [MeV]$	>	4000.0	77.45	±	0.20
DOĆA	<	0.1	65.02	±	0.23

The to-do-list

- More familiar with LHCb software
- Develop new Stripping Line
 - Use cut-based pre-selection to reduce number of combinations and save CPU
 - 2) Use MVA for final selection, to fit into the bandwidth budget
 - 3) Add channel $\eta_c \rightarrow KKKK$ and $\eta_c \rightarrow \pi\pi\pi\pi$
- Signal \rightarrow MC
- Background \rightarrow Real data: Upper Side Band

Conclusions and prospects (Preliminary)

- $B_s^0 \rightarrow \eta_c(4h)\phi(KK)$ selection:
 - re-optimize Stripping Line
 - perform full ϕ_s analysis
 - \Rightarrow naive estimate $\sigma(\phi_s) < 0.3$ rad

Backup

CP violation observation

- A single amplitude cannot give an observable CP violation
- Must have a sum of amplitudes ⇒ contribution from few processes

- ϕ_2 weak phase: CP-violating
- δ_2 strong phase: CP-conserving

Two amplitudes with one phase changing under CP and one CP-conserving \rightarrow CP asymmetry:

$$\mathcal{A}_{CP} = \frac{\Gamma[\overline{B} \to \overline{f}] - \Gamma[B \to f]}{\Gamma[\overline{B} \to \overline{f}] + \Gamma[B \to f]}$$

Estimation of $\mathcal{B}(B^0_s \to \eta_c(4h)\phi(KK))$

$$\begin{array}{lll} \mathcal{B}(B^0_s \to \eta_c(4h)\phi(\textit{KK})) &= & \mathcal{B}(B^0_s \to \eta_c \phi) \times \mathcal{B}(\eta_c \to 4h) \times \mathcal{B}(\phi \to \textit{KK}) \\ &\simeq & 2.3 \times 10^{-5} \end{array}$$

• $\mathcal{B}(B^0_s \to \eta_c \phi)$: • d = s hypothesis $\rightarrow \frac{\mathcal{B}(B^0_s \to \eta_c \phi)}{\mathcal{B}(B^0_s \to J/\psi \phi)} = \frac{\mathcal{B}(B_d \to \eta_c K^0)}{\mathcal{B}(B_d \to J/\psi K^0)}$ • $\mathcal{B}(\eta_c \rightarrow K^+ K^- \pi^+ \pi^-) \sim 53\%$ • $\mathcal{B}(n_c \to K^+ K^- \pi^+ \pi^-)$ NR • $\mathcal{B}(\eta_c \to K_0^* K^- \pi^+)$ • $\mathcal{B}(n_c \to K_0^* \overline{K}_0^*)$ • $\mathcal{B}(n_c \to f_2(1270)f_2'(1525))$ • $\mathcal{B}(\eta_c \to f_2(1270)f_2(1270))$ • $\mathcal{B}(\eta_c \rightarrow \pi^+ \pi^- \pi^+ \pi^-) \sim 40\%$ • $\mathcal{B}(\eta_c \to \pi^+ \pi^- \pi^+ \pi^-)$ NR • $\mathcal{B}(\eta_c \to \rho_0 \rho_0)$ • $\mathcal{B}(\eta_c \to f_2(1270)f_2(1270))$ • $\mathcal{B}(\eta_c \rightarrow K^+ K^- K^+ K^-) \sim 7\%$ • $\mathcal{B}(\eta_c \to K^+ K^- K^+ K^-)$ NR • $\mathcal{B}(n_c \to \phi K^+ K^-)$ • $\mathcal{B}(\eta_c \to \phi \phi)$

Angular analysis

 B_s^0 pseudo-scalar particle and ϕ vector particle

 B^0_{\circ}

 $\mu^+\mu^-$

μ

 K^+K^-

 K^+

• η_c pseudo-scalar particle $\Rightarrow B_s^0 \rightarrow \eta_c \phi$ CP-even

x

 φ_h

Production of pair $b\overline{b}$

- 57% flavor exciting
- 27% gluons separation
- 16% pair creation

Decay modes (1/5)

Mode	B	$\sigma_{\mathcal{B}}$	
$\rho_0 \to \pi^+ \pi^-$	1.00	0.00	
$f_2(1270) ightarrow \pi\pi$ $f_2(1270) ightarrow \pi^+\pi^-$	8.48×10^{-1} 5.65×10^{-1}	$\begin{array}{c} 2.40 \times 10^{-2} \\ 1.60 \times 10^{-2} \end{array}$	
$f_2(1270) \rightarrow K\overline{K}$	4.60×10^{-2}	$4.00 imes10^{-3}$	
$f_2(1270) \rightarrow K^+K^-$	$3.07 imes 10^{-2}$	$2.67 imes10^{-3}$	
$f'_{2}(1525) ightarrow \pi\pi$ $f'_{2}(1525) ightarrow \pi^{+}\pi^{-}$ $f'_{2}(1525) ightarrow K\overline{K}$ $f'_{2}(1525) ightarrow K^{+}K^{-}$	$\begin{array}{c} 8.20\times 10^{-3}\\ 5.47\times 10^{-3}\\ 8.87\times 10^{-1}\\ 5.91\times 10^{-1} \end{array}$	$\begin{array}{c} 1.50\times10^{-3}\\ 1.00\times10^{-3}\\ 2.20\times10^{-2}\\ 1.47\times10^{-2} \end{array}$	
$K_0^* ightarrow K^+ \pi^-$	6.67×10^{-1}	0.00	
$\phi ightarrow K^+K^-$	$4.89 imes 10^{-1}$	$5.00 imes 10^{-3}$	

Decay modes (2/5)

Mode	B	$\sigma_{\mathcal{B}}$
$\eta_c \rightarrow K^+ K^- K^+ K^-$ (non résonant)	$1.34 imes 10^{-3}$	3.20×10^{-4}
$\eta_{c} ightarrow \phi K^{+} K^{-} \ \eta_{c} ightarrow \phi (K^{+} K^{-}) K^{+} K^{-}$	$\begin{array}{c} 2.90 \times 10^{-3} \\ 1.42 \times 10^{-3} \end{array}$	$\begin{array}{c} 1.40 \times 10^{-3} \\ 6.85 \times 10^{-4} \end{array}$
$\eta_{c} ightarrow \phi \phi \ \eta_{c} ightarrow \phi(K^{+}K^{-})\phi(K^{+}K^{-})$	$\begin{array}{c} 1.94 \times 10^{-3} \\ 4.64 \times 10^{-4} \end{array}$	$\begin{array}{c} 3.00 \times 10^{-4} \\ 7.20 \times 10^{-5} \end{array}$
$\eta_{m{c}} ightarrow m{K}^+ m{K}^- m{K}^+ m{K}^-$	$3.22 imes 10^{-3}$	$7.59 imes10^{-4}$

Decay modes (3/5)

$\eta_{c} \rightarrow K^{+}K^{-}\pi^{+}\pi^{-}$ (non résonant)	$6.10 imes 10^{-3}$	$1.20 imes 10^{-3}$
$\eta_c ightarrow K_0^* K^- \pi^+$	2.00×10^{-2}	$7.00 imes 10^{-3}$
$\eta_{c} ightarrow K_{0}^{*}(ec{K^{+}}\pi^{-})ec{K^{-}}\pi^{+}$	$1.33 imes 10^{-2}$	$4.67 imes10^{-3}$
$\eta_{m{c}} o m{K}^* \overline{m{K}}^*$	$6.80 imes 10^{-3}$	$1.30 imes10^{-3}$
$\eta_{m{c}} ightarrow m{\mathcal{K}}_{m{0}}^* \overline{m{\mathcal{K}}}_{m{0}}^*$	$2.27 imes 10^{-3}$	$4.33 imes10^{-4}$
$\eta_{m{c}} ightarrow m{K}^*_{m{0}}(m{K}^+\pi^-)ar{m{K}}^*_{m{0}}(m{K}^-\pi^+)$	$1.01 imes 10^{-3}$	$1.93 imes10^{-4}$
$\eta_{c} ightarrow f_{2}(1270)f_{2}'(1525)$	$9.30 imes 10^{-3}$	$3.10 imes 10^{-3}$
$\eta_{c} \rightarrow f_{2}(1270)(\pi^{+}\pi^{-})f_{2}^{\prime}(1525)(K^{+}K^{-})$	3.11×10^{-3}	$1.04 imes10^{-3}$
$\eta_{c} \rightarrow f_{2}(1270)(K^{+}K^{-})f_{2}'(1525)(\pi^{+}\pi^{-})$	$1.56 imes 10^{-6}$	$6.08 imes10^{-7}$
$\eta_{c} ightarrow f_{2}(1270) f_{2}(1270)$	$9.70 imes 10^{-3}$	$2.50 imes10^{-3}$
$\eta_{c} \rightarrow f_{2}(1270)(\pi^{+}\pi^{-})f_{2}(1270)(K^{+}K^{-})$	1.68×10^{-4}	$4.60 imes10^{-5}$
$\eta_{c} \rightarrow f_{2}(1270)(K^{+}K^{-})f_{2}(1270)(\pi^{+}\pi^{-})$	1.68×10^{-4}	$4.60 imes10^{-5}$
$\eta_{c} ightarrow K^{+}K^{-}\pi^{+}\pi^{-}$	$2.39 imes 10^{-2}$	$4.93 imes 10^{-3}$

$\eta_c ightarrow \pi^+\pi^-\pi^+\pi^-$ (non résonant)	$8.60 imes 10^{-3}$	$1.30 imes 10^{-3}$
$\eta_{c} ightarrow ho ho \ \eta_{c} ightarrow ho_{0} ho_{0} \ \eta_{c} ightarrow ho_{0} (\pi^{+}\pi^{-}) ho_{0} (\pi^{+}\pi^{-})$	$\begin{array}{c} 1.80 \times 10^{-2} \\ 6.00 \times 10^{-3} \\ 6.00 \times 10^{-3} \end{array}$	$\begin{array}{c} 5.00\times 10^{-3} \\ 1.67\times 10^{-3} \\ 1.67\times 10^{-3} \end{array}$
$\eta_c o f_2(1270) f_2(1270) \eta_c o f_2(1270) (\pi^+\pi^-) f_2(1270) (\pi^+\pi^-)$	$\begin{array}{c} 9.70 \times 10^{-3} \\ 3.10 \times 10^{-3} \end{array}$	$\begin{array}{c} 2.50 \times 10^{-3} \\ 8.09 \times 10^{-4} \end{array}$
$\eta_{c} ightarrow \pi^{+}\pi^{-}\pi^{+}\pi^{-}$	$1.77 imes 10^{-2}$	$\textbf{2.26}\times\textbf{10^{-3}}$
$\eta_{c} ightarrow$ (4 <i>h</i>)	$4.48 imes 10^{-2}$	$5.48 imes 10^{-3}$

Decay modes (5/5)

Mode	B	$\sigma_{\mathcal{B}}$
$J/\psi o \mu^+\mu^-$	$5.93 imes 10^{-2}$	$6.00 imes 10^{-4}$
$B^0_{f s} o J/\psi \phi$	$1.09 imes 10^{-3}$	$2.60 imes 10^{-4}$
$B^0_{m s} ightarrow J/\psi(\mu^+\mu^-)\phi(K^+K^-)$	$3.16 imes 10^{-5}$	$7.55 imes10^{-6}$
$B_c^0 ightarrow \eta_c \phi$	$1.04 imes 10^{-3}$	$2.91 imes 10^{-4}$
$B^0_s o \eta_c(4h) \phi(K^+K^-)$	$2.27 imes10^{-5}$	$6.96 imes 10^{-6}$
$B^0_{ m s} ightarrow \eta_{ m c}(K^+K^-K^+K^-)\phi(K^+K^-)$	$1.63 imes 10^{-6}$	$5.99 imes10^{-7}$
$\check{B}^0_s \to \eta_c (\pi^+ \pi^- \pi^+ \pi^-) \phi(\check{K}^+ K^-)$	$8.96 imes10^{-6}$	2.77×10^{-6}
$B_s^0 ightarrow \eta_c (K^+ K^- \pi^+ \pi^-) \phi (K^+ K^-)$	$1.21 imes10^{-5}$	4.22×10^{-6}

Descriminating variable (1/3)

Descriminating variable (2/3)

Descriminating variable (3/3)

Software in LHCb

online:

- Particles productions and decays:
 - PYTHIA: proton-proton collision
 - Photos: photon emission
 - EvtGen: hadron-b decays
- Interaction with LHCb detecteur
 - GEANT4: Interaction between matter and particles
 - Boole: Digitisation

offline:

- Brunel: event reconstruction
- DaVinci: Decay analysis
- Stripping Line: preselection code
- MINUIT: likelihood minimisation algorithm

Measurement of ϕ_s in $B_s \rightarrow \eta_c \phi$

•
$$\eta_c \phi$$
 purely even-CP eigenstate \Rightarrow no angular dependence

$$\frac{\mathrm{d}\Gamma(B_s^0 \to \eta_c \phi)}{\mathrm{d}t} \propto e^{-\Gamma_s t} \left[\sin(\phi_s) \sin(\Delta m_s t) + \cosh(\frac{1}{2}\Delta\Gamma_s t) - \cos(\phi_s) \sinh(\frac{1}{2}\Delta\Gamma_s t) \right]$$

$$\frac{\mathrm{d}\Gamma(B_s^0 \to \eta_c \phi)}{\mathrm{d}t} \propto e^{-\Gamma_s t} \left[-\sin(\phi_s) \sin(\Delta m_s t) + \cosh(\frac{1}{2}\Delta\Gamma_s t) - \cos(\phi_s) \sinh(\frac{1}{2}\Delta\Gamma_s t) \right]$$

with
$$\Delta \Gamma_s \equiv \Gamma_H - \Gamma_L$$
 and $\Delta m_s \equiv M_H - M_L$

•
$$\mathcal{A}_{CP}(t) = \frac{\Gamma[B_s(t) \to \eta_c \phi] - \Gamma[B_s(t) \to \eta_c \phi]}{\Gamma[\overline{B}_s(t) \to \eta_c \phi] + \Gamma[B_s(t) \to \eta_c \phi]} \propto sin(\phi_s)sin(\Delta m_s t)$$

Background

• $\eta_c \rightarrow KK\pi\pi$ • $B_s^0 \rightarrow D_s D_s$ where $D_s \rightarrow \phi\pi$ or $D_s \rightarrow KK\pi$ • $B_s^0 \rightarrow \phi 4h$ • $B_s^0 \rightarrow \phi\phi\phi$

•
$$\eta_c \to \pi \pi \pi \pi$$

• $B_s^0 \rightarrow D_s \pi \pi \pi$

Step	# MC evts of signal	Efficiency		Error
$\epsilon_{\it rec/gen}$	178842	4.50×10 ⁻²	±	0.10×10 ⁻²
$\epsilon_{strip/rec}$	15 434	8.63×10 ⁻²	\pm	0.13×10 ⁻²
$\epsilon_{\it trig/strip}$	3 725	2.28×10^{-1}	\pm	0.30×10^{-1}

Expected sensitivity in 2028

Systematics

Source	Γs	$\Delta\Gamma_S$	$ A_{\perp}(t) ^2$	$ A_0(t) ^2$	δ_{\parallel}	δ_{\perp}	ϕ_{S}	$ \lambda $
	[ps ⁻¹]	[ps ⁻¹]			[rad]	[rad]	[rad]	
Stat. uncertainty	0.0048	0.016	0.0086	0.0061	+0.13 -0.21	0.22	0.091	0.031
Background subtraction	0.0041	0.002	-	0.0031	0.03	0.02	0.003	0.003
$B^0 \rightarrow J/\psi K^{*0}$ background	-	0.001	0.0030	0.0001	0.01	0.02	0.004	0.005
Ang. acc. reweighting	0.0007	-	0.0052	0.0091	0.07	0.05	0.003	0.020
Ang. acc. statistical	0.0002	-	0.0020	0.0010	0.03	0.04	0.007	0.006
Lower decay time acc. model	0.0023	0.002	-	-	-	-	-	-
Upper decay time acc. model	0.0040	-	-	-	-	-	-	-
Length and mom. scales	0.0002	-	-	-	-	-	-	-
Fit bias	-	-	0.0010	-	-	-	-	-
Quadratic sum of syst.	0.0063	0.003	0.0064	0.0097	0.08	0.07	0.009	0.022
Total uncertainties	0.0079	0.016	0.0107	0.0114	+0.15 -0.23	0.23	0.091	0.038

CP and CKM

Definition: CP transformation (not conserved)

• Charge Conjugation C: • Parity P: • Product CP: $C|\psi(\overrightarrow{\rho},h)\rangle = \eta_C |\overline{\psi}(\overrightarrow{\rho},h)\rangle$ $P|\psi(\overrightarrow{\rho},h)\rangle = \eta_P |\psi(-\overrightarrow{\rho},-h)\rangle$ $CP|\psi(\overrightarrow{\rho},h)\rangle = \eta_{CP} |\overline{\psi}(-\overrightarrow{\rho},-h)\rangle$

• CKM Matrix and Wolfenstein parametrization

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \frac{1}{2}\lambda^2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{1}{2}\lambda^2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + O(\lambda^4)$$

- CP violation is described by an irreducible phase: $\eta \neq 0$ in the SM
- CKM phase: $V_{ub} \neq V_{ub}^*$

Combinatorial background and preselection

LHCb Event Display

- ~100 tracks per event
 - 80% are low p_T kaons and pions from the primary vertex
 - \longrightarrow source of combinatorial background
 - \longrightarrow difficult to select the 6 hadrons of our final state
- Preselection: reduce number of events
 - Kinematic cuts (p, p_T, χ² vertex, mass)
 - Particle-identification cuts

Expected number of signal candidates (S)

 $S = \mathcal{L}_{int} \times \sigma_{b\overline{b}} \times f_{B_s^0} \times 2 \times \mathcal{B}(B_s^0 \to \eta_c(4h)\phi(KK)) \times \epsilon_{tot}$ $\epsilon_{tot} = \epsilon_{acceptance} \times \epsilon_{reconstruction} \times \epsilon_{trigger} \times \epsilon_{preselection}$

- First estimation of *S* with a Monte Carlo based study (2006) $\rightarrow \sim 4300$ events (LHCb has 95 000 $B_s^0 \rightarrow J/\psi(\mu^+\mu^-)\phi(KK)$ events)
- \mathcal{L}_{int} total luminosity (3 fb⁻¹)
- $\sigma_{b\overline{b}}$ cross section of $b\overline{b}$ production (~250 μb at 7 TeV)
- $f_{B_s^0}$ fraction of *b* quark giving a B_s^0 meson (~10%)

• We need to estimate:

- $\mathcal{B}(B^0_s \to \eta_c(4h)\phi(KK))$
- ϵ_{tot} (and intermediate efficiencies)