Temperature Impact on Timing, Trigger and Control Systems for High Energy Physics Experiments

AUTHOR: ELENA SORINA LUPU

SUPERVISORS: SOPHIE BARON, MANOEL BARROS MARIN

- **1.** Introduction
- **2.** Project Overview
- **3.** Example Results
- 4. Summary & Outlook

1. Introduction

- 2. Project Overview
- 3. Example Results
- 4. Summary & Outlook

Introduction (1 of 5) PH-ESE

Physics Department (PH)

Carries out basic research in the field of experimental and theoretical particle physics.

Electronics Systems for Experiments Group (ESE)

(Group leader: P. Farthouat)

- BE Back End Systems Section; Group Leader: F. Vasey
- FE Front End Systems Section; Group Leader: F. Anghinolfi
- ME Microelectronics Section: Group Leader: M. Campbell

Introduction (2 of 5)

Time, Trigger & Control (TTC) system

Provides distribution of:

- ✓ synchronous timing with Bunch Clock(40.079MHz)*
- ✓ the level 1 trigger command

✓ broadcast and individually-addressed **control** commands

*The Bunch Clock is the frequency at which an observer sitting close to the ring could 'see' particles passing [1]

Introduction (3 of 5) Jitter

Cycle-to-cycle Jitter

Short term variation in the clock period between adjacent clock cycles;

Period Jitter

Short term variation in the clock period over all measured clock cycles, compared to the average clock period;

Skew Jitter

Phase error between the reference clock and the measured clock over all clock periods;

Time Interval Error Jitter

Actual deviation from the ideal clock period over all clock periods.

Introduction (4 of 5) Jitter

How temperature affects TTC systems?

GBT project

• The HL – LHC will increase the amount of data (by 2020)

•A new GBT – based high-speed rad-hard optical link under development

•Most of LHC upgrades adopt the new GBT – based link (LHC, CLIC, ATLAS, CMS, ALICE, LHCb etc.)

The GBT-FPGA team: Mrs. Baron & Mr. Barros Marin

1. Introduction

2. Project Overview

- 3. Example Results
- 4. Summary & Outlook

Objectives

Characterization of several components of a TTC system in terms of Jitter VS
 Temperature

✓ Verify the data transmission/reception with fixed and deterministic latency capabilities of the GBT-FPGA under different conditions (e.g. after power up, reset, temperature variations, etc.) with different FPGAs

Approach

Implementation of a fully automated test bench

THEORY is when you know everything but nothing works.

PRACTICE is when everything works but no one knows why.

In this lab, THEORY and PRACTICE are combined: nothing works and no one knows why.

Project Overview Fully automated test bench

Fully automated test bench

Firmware:

Language: VHDL

EDA tools:

- > Xilinx:
 - ISE
 - ChipScope

> Altera:

- Quartus II
- In-System Sources & Probes

Quartus II (Altera)

ISSP PLL LOCKED

*****₹

P29

P3

Project: kc705_gbt_example_design_V3_OK	VIO Console - DEV:0 MyDevice0 (XC7K325T) UNIT:0 MyVIO0 (VIO)	r ⊠ ∑
PDEV:0 MyDevice0 (XC7K325T)	Bus/Signal	Value
- XADC Console - UNIT:0 MyVIO0 (VIO)	LATENCY-OPTIMIZED GBT LINK - TX (LOW WHEN STANDARD GBT RX)	
	LATENCY-OPTIMIZED GBT LINK - RX (LOW WHEN STANDARD GBT RX)	
- Trigger Setup - Waveform - Listing	TX PLL LOCKED	
	MGT READY	•
Bus Plot	- RX_WORDCLK READY	•
← UNIT:2 MyILA2 (ILA) — Trigger Setup	- RX_FRAMECLK READY	•
- Waveform	- RX GBT READY	•
Bus Plot	← RX BITSLIP NUMBER	00
	- FPGA_CLKOUT ('0' -> TX_FRAMECLK '1' -> TX_WORDCLK)	0
Bus Plot	← RX BITSLIP NUMBER - FPGA_CLKOUT ('0' -> TX_FRAMECLK '1' -> TX_WORDCLK)	00

ChipScope (Xilinx)

Example of Device Under Test (DUT)

Attention! Before starting the tests, remove all non-electronics objects!

Example of Device Under Test (DUT)

eCDR-PLL test chip (Clock and Data Recovery)

- data rate: 40, 80, 160 or 320 Mbit/s;
- •output clocks: 40, 80, 160 and 320 MHz;
- •Tests performed: jitter evaluation for several clock and data inputs versus temperature (reset or no reset of the board).

GBT – FPGA core on Xilinx FPGA (Kintex 7)

- Board: kc705
- Optical link at 4.8Gbps
- Connectivity
 - Loopback
 - Board-to-board

Tests performed: Clocks skew jitter and data latency evaluation

versus temperature (reset or no reset of the board)

eCDR Board

GBT – FPGA on KC705

Example of Test Implementation

Implementation:

Two FPGAs communicating with each other

- 1. Introduction
- 2. Project Overview
- **3. Example Results**
- 4. Summary & Outlook

Example results

eCDR (Clock and Data Recovery)

		Mean	Values		Standard De	viation Values	
Type of Test	Jitter	Min Temp (10°C)	Min Temp (60°C)	Δ	Min Temp (10°C)	Min Temp (60°C)	Δ
	Cycle to Cycle	constant (2 fs)		0	12 ps	14 ps	2ps
eCDR mode wit	Period	constant (6.25 ns) 0 7.5 ps 8 ps 0 0 0 12.5 ps 11.5 ps	8 ps	0.5 ps			
320Mbps data	TIE		11.5 ps	1 ps			
input (PRBS)	Skew between clocks	0.2 ns	0.3 ns	0.1 ns	17 ps	16 ps	1 ps
	Skew between clock and data	1 ns	0.7 ns	0.3 ns	5.62 ns	5.68 ns	0.06 ns

<u>GBT – FPGA on Xilinx FPGA (Kintex 7)</u>

	Skew Value
Standard Deviation	46 ps
Mean	215 ns

Weird points

Example results

ELECTRONIC SYST

- 1. Introduction
- 2. Project Overview
- 3. Example Results
- 4. Summary & Outlook

Summary & Outlook

Summary

Characterization of jitter and latency of components of a TTC system

Implemented fully automated test bench

Several units already tested

Outlook

Finish ongoing tests (e.g. GBT-FPGA on Xilinx FPGA (Kintex 7), Si5338, TTCrq)

Perform new tests (e.g. LMK32000, GBT-FPGA on Altera FPGA (Cyclone V), TTC-PON clock and data recovery with KC705)

Acknowledgments

Mrs. Sophie Baron

Mr. Manoel Barros Marin

Mr. Paulo Moreira

Mr. Pedro Leitao

Mr. Dimitrios Kolotouros

Mr. Marcos Oliveira

Mr. Steven Wilcox

Summer Student Team: Mrs. Roxana Banica, Mrs. Jennifer Dembski and Mrs. Sharon Hobson

References

[1] The TTC system and Jitter in LHC experiments (Author: S.Baron) PH-ESE seminar 18 Dec. 2012

[2] GBT – FPGA User Guide (Author: S. Baron and M. Barros Marin)

[3] Jitter - Impact on clock distribution in LHC experiments (Author: S. BARON) - TWEPP 2012

[4] A primer on Jitter, Jitter Measurement and Phase-Locked Loops AN687 Silicon Labs

[5] Jitter Analysis Techniques for High Data Rates – Application Note 1432 Agilent Technologies

[6] Jitter – Understanding it, Measuring It, Eliminating It (Part I, II and III), High Frequency Electronics (April 2004)

[7] Jitter and Wander Measurement Guide

[8] Clock and Data Recovery for Serial Digital Communication, Rick Walker, Palo Alto, California

Units Under Tests

Boards/devices		Standard tests		Additionnal tests				
		Temperature scan – no reset	Temperature scan with reset	Locking range	Power consumption	Contact persons	Priority	
	TTCrq	TTCrx	Ok	tbd	x	x	Paulo, Sophie	5
		QPLL	Ok	tbd	х	х		5
	Si5338		Ok	tbd	x	x	Peter Lichard, Vito Palladino, Sophie	2
	LMK32000		tbd	tbd	х	х	Dimitris, Sophie	5
DEVICES	ePLL-CDR	CDR – FM 40MHz	Ok	Ok	tbd	Ok	Pedro, Paulo, Sophie	1
		CDR – FM 30MHz	Ok	Ok	x			
		CDR – internal calibration	Ok	Ok	х	Ok		
		CDR – external calibration	Ok	Ok	х	Ok		
FPGAs	GBT-FPGA on	Тх	Ok	Ok	х	х		
	KC705	Rx	Ok	Ok	х	x		3
	GBT-FPGA on Cyclone V	Тх	Tbd*	Tbd*	х	х	Manoel	
		Rx	Tbd*	Tbd*	x	х		
	TTC DON clock and	standard	Tbd*	Tbd*	х	х		
	data recovery with KC705	With internal VCXO	Tbd**	Tbd**	x	x	Csaba Soos, Dimitris, Sophie	4

