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Reaction Rate and Cross Section [1/3]
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 We call mean free path the average distance travelled by 
a particle in a material before an interaction. Its inverse,              
is the probability of interaction per unit distance, and is called 
macroscopic cross section. Both    and     depend on the material 
and on the particle type and energy.

 For N identical particles, the number of reactions R occurring in a 

given time interval will be equal to the total distance travelled Nl
times the probability per unit distance   :

 The reaction rate will be                           , where v is the 

average particle velocity.
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Reaction Rate and Cross Section [2/3]
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 Assume now that n(r,v)=dN/dV [cm-3] be the density of particles 

with velocity v=dl/dt [cm/s], at a spatial position r. The reaction 

rate inside the volume element dV will be: 

 The quantity                        is called fluence rate or flux density 
and has dimensions [cm-3 cm s-1]=[cm-2 s-1]. 

 The time integral of the flux density                          is the 
fluence [cm-2] 

 Fluence is measured in particles per cm2 but in reality it 
describes the density of particle tracks

 The number of reactions inside a volume V is given by the 

formula:             (where the product         is integrated over 
energy or velocity)
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Reaction Rate and Cross Section [3/3]
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• Dividing the macroscopic cross section by N0, the number of atoms  

per unit volume, one obtains the microscopic cross section
s[barn=10-24cm2].

i.e., the area of an atom weighted with the probability of interaction
(hence the name “cross section”).

• But it can also be understood as the probability of interaction per
unit length, with the length measured in atoms/cm2 (the number of
atoms contained in a cylinder with a 1 cm2 base).
• In this way, both microscopic and macroscopic cross section are
shown to have a similar physical meaning of “probability of interaction
per unit length”, with length measured in different units. Thus, the
number of interactions can be obtained from both, by multiplying
them by the corresponding particle track-length.
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Fluence estimation [1/2]

 Track length estimation:

 Collision density estimation (NOT IN VACUUM!):
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Surface crossing estimation

 Imagine a surface having
an infinitesimal thickness dt

A particle incident with an
angle θ with respect to the normal
of the surface S will travel a segment dt/cosθ.

 Therefore, we can calculate an average surface fluence by adding 
dt/cos θ for each particle crossing the surface, and dividing by the 
volume S dt

 While the current J counts the number of particles crossing the 

surface divided by the surface:

J= dN/dS

The fluence is independent of the orientation of the surface S,

while the current is NOT!

In an isotropic field it can be easily seen that for a flat surface  J = /2

Fluence estimation [2/2]
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Complexity
 Simple case: a mono-directional (zero divergence) monochromatic beam 

attenuated by a uniform shielding layer of thickness T

 The source term: a fluence (E,q,r) = dN/d/dE/dS = C (E-E0) (q-q0)

 Suppose that the particles are absorbed according to a macroscopic 
absorption cross section t =  interaction probability per cm  = stNAr/A 

 In an infinitesimal thickness dt the probability to be absorbed is P=  dt

 d(t)= -(t)P = -(t) t dt,  a differential equation that is solved by the 
exponential function 

 (T) = (0) exp(- t  T)                EASY !!

 Now ... suppose that the particles are not absorbed, but scattered 
according to some energy-dependent distribution dsE’,q’ )/d’ , exiting 
with E’ = g(E,q’) where g is defined by the kinematics. 

 Now … suppose that the original beam was not monochromatic, or that 
particles can also be produced or that the geometry is not uniform, and 
the dimensions of the integral will explode.
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MC mathematical foundation
The Central Limit Theorem is the mathematical foundation of the Monte 

Carlo method. In words:

Given any observable A, that can be expressed 
as the result of a convolution of random 
processes, the average value of A can be 
obtained by sampling many values of A according 
to the probability distributions of the random 
processes.

MC is indeed an integration method that allows to solve multi-
dimensional integrals by sampling from a suitable stochastic 
distribution.

The accuracy of MC estimator depends on the number of samples:

N

1
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Integration efficiency
• Traditional numerical integration methods (e.g., Simpson) converge to the 

true value as N-1/n, where N = number of “points” (intervals) and n = number 
of dimensions

• Monte Carlo converges as N-1/2, independent of the number of dimensions

• Therefore:

 n = 1  MC is not convenient

 n = 2  MC is about equivalent to traditional methods 

 n > 2  MC converges faster (and the more so the greater the 
dimensions) 

• the dimensions are those of the largest number of “collisions” per history

• Note that the term “collision” comes from low-energy neutron/photon 
transport theory. Here it should be understood in the extended meaning of 
“interaction where the particle changes its direction and/or energy, or 
produces new particles” 



Particle transport
 Particle transport is a typical physical process described by 

probabilities (cross sections = interaction probabilities per unit 
distance)

 Therefore it lends itself naturally to be simulated by Monte Carlo

 Many applications, especially in high energy physics and medicine, 
are based on simulations where the history of each particle 
(trajectory, interactions) is reproduced in detail 

 However in other types of application, typically shielding design, the 
user is interested only in the expectation values of some quantities 
(fluence and dose) at some space point or region, which are 
calculated as solutions of a mathematical equation

 This equation (the Boltzmann equation), describes the statistical 
distribution of particles in phase space and therefore does indeed 
represent a physical stochastic process 

 But in order to estimate the desired expectation values it is not 
necessary that the Monte Carlo process be identical to it
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Integration without simulation

 In many cases, it is more efficient to replace the actual 
process by a different one resulting in the same average 
values but built by sampling from modified distributions

 Such a biased process, if based on mathematically 
correct variance reduction techniques, converges to the 
same expectation values as the unbiased one

 But it cannot provide information about the higher 
moments of statistical distributions (fluctuations and 
correlations) 

 In addition, the faster convergence in some user-
privileged regions of phase space is compensated by a 
slower convergence elsewhere
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Analog Monte Carlo

In an analog Monte Carlo calculation, not only the mean of the 
contributions converges to the mean of the actual distribution, but also 
the variance and all moments of higher order:
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Then, partial distributions, fluctuations and correlations are all 
faithfully reproduced: in this case (and in this case only!) we have a 

real simulation
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Random sampling: the key to MC

The central problem of the Monte Carlo method:

Given a Probability Density Function (pdf), f(x), generate a sample of 
x’s distributed according to f(x) (x can be multidimensional)

The use of random sampling techniques is the distinctive feature of Monte Carlo

Solving the integral Boltzmann transport equation by Monte Carlo consists of:

• Geometry and material description of the problem

• Random sampling from probability distributions of the outcome of physical events 

f(x)

x


x

xmin
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Particle transport Monte Carlo
Application of Monte Carlo to particle transport and interaction:

 Each particle is followed on its path through matter

 At each step the occurrence and outcome of interactions are 
decided by random selection from the appropriate probability 
distributions

 All the secondaries issued from the same primary are stored in a 
“stack” or “bank” and are transported before a new history is 
started

 The accuracy and reliability of a Monte Carlo depend on the 
models or data on which the probability distribution functions are 
based

 Statistical precision of results depends on the number of 
“histories"

 Statistical convergence can be accelerated by “biasing" 
techniques.



Assumptions

 Static, homogeneous, isotropic, amorphous media and geometry 
Problems: e.g. moving targets*, atmosphere [must be represented by 

discrete layers of uniform density], radioactive decay taking place in a 
geometry different from that in which the radionuclides were produced*, 
crystal channeling*. 

* These restrictions have been (* are being) overcome in FLUKA

 Markovian process: the fate of a particle depends only on its actual 
present properties, not on previous events or histories

 Particles do not interact with each other
Problems: e.g. the Chudakov effect (charges cancelling in e+e– pairs)

 Particles interact with individual electrons / atoms / nuclei / molecules
Problems: invalid at low energies (X-ray mirrors)

 Material properties are not affected by particle reactions
Problems: e.g. burnup
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 Several pre-defined estimators can be activated in FLUKA.

 One usually refers to these estimators as “scoring” capabilities

 Users have also the possibility to build their own scoring through user 
routines (some of which mentioned afterwards), HOWEVER:

 Built-in scoring covers most of the common needs

 Built-in scoring has been extensively tested

 Built-in scoring takes BIASING weights automatically into account

 Built-in scoring has refined algorithms for track subdivision

 Built-in scoring comes with utility programs that allow to evaluate 
statistical errors

 Geometry dependent and geometry independent scoring both available

 FLUKA can score particle fluence (tracklength), current, energy spectra, 
angular distributions, energy deposition, activity ...

 Either integrated over the “run”, with proper normalization, OR event-
by event

 Standard scoring can be weighted by means of simple user routines

Built-in scoring
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see the Beginners’ Course

 SCORE scores energy deposited (or star density) in each region 
[table in the .out file, not automatically merged over cycles]

 RESNUCLEi scores residual nuclei (or their activity) in a given region

 USRTRACK (USRCOLL) scores average differential fluence d/dE
of a given type or family of particles over a given region

 USRBDX scores average double differential fluence (or current) d2/dEd
of a given type or family of particles over a given surface

 USRBIN scores the spatial distribution of deposited energy density, dose,
integrated fluence, star density, dose equivalent, net charge, specific activity, 
... in a regular mesh (cylindrical or Cartesian) described by the user

 USRYIELD scores a double differential yield [do not ask for cross section, like 
by default] of particles escaping from a surface. The distribution can be with 
respect to energy and angle (wrt the beam direction), but also many other 
more “exotic” quantities

Remember that low energy (<20MeV) neutrons
have a pre-defined energy binning

Scoring cards [1]



Warnings [I]
 USRBIN scoring algorithm:

By selecting WHAT(1)>=10, energy deposition, dose, ... are distributed along the 

particle track (recommended!)

*** Activity/fission/neutron balance binnings cannot be track-length!!!

Point-wise quantities have to be scored at a point (select WHAT(1)<10)

 Badly defined USRBIN limits 

 Never use unit numbers smaller than 20 or higher than 99
<20 reserved by FLUKA >99 FORTRAN limitation

 Never mix the output of different scoring cards in the same unit

 Verify that you didn’t merge cycles referring to different input versions 
(change the name of the input file for every new problem!)
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******* Fluka stopped in Usrbin: "usr/eventbin" n.    1 *******
******* with zero width   0.000     for axis  R  ******



 Trying to understand: lower e--thresholds help

 Real-Problem: point-wise scoring requested

 Thin window with low-E (5MeV) electron beam

 Energy deposition profile in the window
(for radiation damage studies)

 Observation of ‘strange peaks’

20

PRECISION Low e- Thr. CORRECT Scoring

Example

NEW-DEFAULTS
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 EVENTBIN is like USRBIN, but prints the binning output after each event
instead of an average over histories

 ROTPRBIN sets the storage precision (single or double) and assigns 
rotations/translations for a given user-defined binning (USRBIN or 
EVENTBIN). Quite useful in case of LATTICE

 USERDUMP defines the events to be written onto a “collision tape” file 
Coupled to the mgdraw user routine

 AUXSCORE  defines filters and conversion coefficients

 TCQUENCH sets scoring time cut-offs and/or Birks quenching parameters for 
binnings (USRBIN or EVENTBIN) indicated by the user

 DETECT scores energy deposition in coincidence or anti-coincidence with a 
trigger, separately for each “event" (primary history). Dedicated post-
processing routine available

Scoring cards [2]
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Dose-Equivalent (not Dose)
For some quantities, there is the possibility to get built-in conversions, 
without the need for user routines, rather through dedicated generalized 
particles. The most commonly used is dose equivalent (ambient dose 
equivalent or effective dose):

DOSE-EQ Dose Equivalent [pSv]

DOSEQLET   Dose Equivalent via Q(LET) – unrestricted LET in water –
according to ICRP60 [GeV/g]

!!!! Different to !!!

DOSE           total absorbed dose in GeV/g

DOSE-EM   as above but electromagnetic contribution only

DOSE-EQ is calculated by folding particle fluences with conversion 
coefficient sets, selected by the user among a list (see manual) through 
AUXSCORE. The default set (not requiring the AUXSCORE association) is 
“AMB74”. 

WARNING : in case of DOSE-EQ no coefficients available for heavy ions (ok for DOSEQLET) !!!

( )
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“FILTER” : AUXSCORE

There is the possibility to filter the estimators, restricting the scoring to a 
selected subset of particles.

For instance: USRBIN energy deposition by muons only

USRBIN     11.0     ENERGY -40.0      10.0           15.0 TargEne

USRBIN      0.0                -5.0     100.0          200.0 &

AUXSCORE USRBIN      MUONS              TargEne

Another example: score the yield [vs polar angle and kinetic energy] of 56-Iron ions (there is 
no separate name for each ion specie, except light ones. HEAVYION scores all isotopes 
heavier than alpha together!)  

USRYIELD    124.0  HEAVYION   -87.    TARGS3     INAIR      1.0Fe56

USRYIELD    180.0       0.0    18.      10.0       0.0      3.0&

AUXSCORE USRYIELD -5602600.             Fe56

The requested ion is coded in WHAT(2)= - (100*Z + 100000*A + m*100000000)
according to its A, Z and (optionally) isomeric state m
with 0==all, i.e. -2600 == all Iron isotopes

ACTIVITY!

ionization (+NIEL) by the selected particle, critically depending on the delta rays threshold! 
[doubtful physical meaning]
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Routines associated to FLUKA scoring
 comscw.f weighting energy deposition and star production

 fluscw.f weighting fluence, current and yield

 mgdraw.f general event interface

 usrrnc.f intercepting produced residual nuclei (at the end of their path)

 endscp.f shifting energy deposition

 fldscp.f shifting fluence

 musrbr.f special USRBIN binning (lattice): returns region #

 lusrbl.f special USRBIN binning (lattice): returns lattice #

 fusrbv.f special USRBIN binning (lattice): returns zero

 mdstck.f

 stuprf.f intercepting particle stack

 stupre.f



Statistical Errors [1]

 Can be calculated for single histories (not in FLUKA), or for 
batches of several histories

 Distribution of scoring contributions by single histories can be 
very asymmetric (many histories contribute little or zero)

 Scoring distribution from batches tends to Gaussian for             
N  , provided s2   (thanks to Central Limit Theorem)

 The standard deviation of an estimator calculated from batches 
or from single histories is an estimate of the standard deviation 
of the actual distribution (“error of the mean”)

How good is such an estimate depends on the type of estimator 
and on the particular problem (but it converges to the true value 
for N  )
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Statistical Errors [2]

 The variance of the mean of an estimated quantity x (e.g., fluence), 

calculated in N batches, is:






































2

1

2

12

1

1

n

xn

n

xn

N

N

iii

N

i

xs

mean of squares – square of means

N – 1

where:

ni = number of histories in the i th batch

n = Σni = total number of histories in the N batches

xi = average of x in the i th batch: 

xij is the contribution to x of the jth history in the ith batch

In the limit N = n, ni =1, the formula applies to single history statistics
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Statistical Errors [3]

Practical tips:

• Use always at least 5-10 batches of comparable size (it is not at 

all mandatory that they be of equal size)

• Never forget that the variance itself is a stochastic variable

subject to fluctuations

• Be careful about the way convergence is achieved: often 

(particularly with biasing) apparent good statistics with few 

isolated spikes could point to a lack of sampling of the most 

relevant phase-space part

• Plot 2D and 3D distributions! Looking at them the eye is the

best tool in judging the quality of the result

27



from an old version of the MCNP Manual:
Relative error       Quality of Tally

50 to 100%           Garbage

20 to 50% Factor of a few

10 to 20                Questionable

< 10%              Generally reliable

 Why does a 30% σ mean an uncertainty of a “factor of a few”? 
Because σ in fact corresponds to the sum (in quadrature) of two 
uncertainties: one associated to the fraction of histories which don’t give 
a zero contribution and the other reflecting the spread of the 
non-zero contributions

 The MCNP guideline is empirically based on experience, not on a 
mathematical proof. But it has been generally confirmed as working also with 
other codes

 Small penetrations and cracks are very difficult to handle by MC, because the 
“detector” is too small and too few non-zero contributions can be sampled, 
even by biasing 
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Statistical Errors [4]
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Systematic Errors
 physics: different codes are based on different physics models. Some models 

are better than others. Some models are better in a certain energy range. 
Model quality is best shown by benchmarks at the microscopic level (e.g. 
thin targets)

 artifacts: due to imperfect algorithms, e.g., energy deposited  in the middle 
of a step*, inaccurate path length correction for multiple scattering*, missing 
correction for cross section and dE/dx change over a step*, etc. Algorithm 
quality is best shown by benchmarks at the macroscopic level (thick targets, 
complex geometries)

 data uncertainty: results can never be better than allowed by available 
experimental data!

 material composition: not always well known. In particular concrete/soil
composition (how much water content? Can be critical). Air  contains 
humidity and pollutants, has a density variable with pressure 

 beam losses: most of the time these can only be guessed

 presence of additional material, not well defined (cables, supports...)

 geometries cannot be reproduced exactly (or would require too much effort)
Is it worth doing a very detailed simulation when some parameters are unknown or 
badly known? 



 mis-typing the input: Flair is good at checking, but the final responsibility is 
the user’s

 error in user code: use the built-in features as much as possible!

 wrong units

 wrong normalization: quite common

 unfair biasing: energy/space cuts cannot be avoided, but must be done with 
much care

 forgetting to check that gamma production is available in the low energy 
neutron library (e.g., Ba cross sections)

 … 
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Mistakes
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Biasing Mean Free Paths

Multiplicity Tuning BIASING

 Multiplicity tuning is meant to be to hadrons what LPB is for 
electrons and photons.

 A hadronic nuclear interaction at LHC energies can end in 
hundreds of secondaries. Except for the leading particle, many 
secondaries are of the same type and have similar energies and 
other characteristics

 The user can tune the average multiplicity in different regions

Interaction Length LAM-BIAS

 Mean life / average decay length of unstable particles can be 
artificially shortened

 Can increase generation rate of decay products without 
discarding the parent

 For hadrons the mean free path for nuclear inelastic interactions
can be artificially decreased. Useful for very thin targets, and also 
for photonuclear reactions where the cross section is relatively 
small


