Sources

Advanced FLUKA Course

Overview

1. Built-in sources

- Beam definition
- Extended sources
- Colliding beams and synchrotron radiation (SPECSOUR)

2. User-defined sources

- User routine SOURCE
- Useful auxiliary routines
- Sampling techniques
- Two-step methods

3. Example: point vs. extended source

Built-in sources

Beam definition-1

Input card: BEAM
defines several beam characteristics.
type of particle, energy, divergence, profile

Example

- $3.5 \mathrm{GeV} / \mathrm{c}$ [WHAT (1)] proton beam [SDUM] with weight 1 [WHAT (6)]
- Gaussian momentum distribution: $0.082425 \mathrm{GeV} / \mathrm{c}$ FWHM [พHAT (2)]
- Gaussian angular distribution: 1.7 mrad FWHM [WHAT (3)]
- no beam width along \times (point-like source) [WHAT (4)]
- no beam width along y (point-like source) [WHAT (5)]

Beam definition - 2

Input card: BEAMPOS

If SDUM = blank:
defines the coordinates of the centre of the beam spot and the beam direction

Example

- x-coordinate: 0.0 [WHAT (1)]
- y-coordinate: 0.0 [WНАТ (2)]
- z-coordinate: - 0.1 cm [WHAT (3)]
- direction cosine with respect to the x-axis: 0.0 [WHAT (4)]
- direction cosine with respect to the y-axis: 0.0 [WHAT (5)]
- WHAT (6) is not used!
\rightarrow beam points in the positive z-direction starting at (0.,0.,-0.1)

Beam definition - 3

Input card: BEAMAXES

defines the beam reference frame which all parameters defined with BEAM and BEAMPOS refer to (angular divergence, transverse profile, polarization, extended sources)

Example

*...+....1	2		4	5.... + . . . $6+$. . . 7		
BEAMAXES	1.0	0.0	0.0	0.0	0.7071068	0.7071068

- cosine of angle between x-axis of beam and x-axis of geometry frame - cosine of angle between x-axis of beam and y-axis of geometry frame - cosine of angle between x-axis of beam and z-axis of geometry frame
[WHAT (1)]
[WHAT (2)]
[WHAT (3)] $(1 ., 0,0) \rightarrow x$-axes of beam and geometry frames are parallel
- cosine of angle between z-axis of beam and x-axis of geometry frame - cosine of angle between z-axis of beam and y-axis of geometry frame
- cosine of angle between z-axis of beam and z-axis of geometry frame
[WHAT (4)] [WHAT (5)]
[WHAT (6)] $(0 ., 0.7071068,0.7071068) \rightarrow$ z-axis of beam frame is at 45deg to both y-and z-axes of geometry frame

Extended sources - Spherical shell source

Input card: BEAMPOS

If SDUM = SPHE-VOL:
defines a spatially extended source in a spherical shell

Example

BEAMPOS	0.0	0.0	0.0	0.0	0.0	0.0
BEAMPOS	0.0	1.0	0.0	0.0	0.0	0.0SPHE-VOL

- radius (in cm) of the inner sphere shell: 0.0 cm [WHAT (1)]
- radius (in cm) of the outer sphere shell: 1.0 cm [WHAT (2)]
- WHAT (3) - WHAT (6) are not used!

The shell is centred at the (x, y, z) point defined by another BEAMPOS card with SDUM = blank (or = NEGATIVE). The particle direction or angular distribution are those defined by BEAM, BEAMAXES and another BEAMPOS cards.

Extended sources - Cylindrical shell source

Input card: BEAMPOS

If SDUM = CYLI-VOL:
defines a spatially extended source in a cylindrical shell with the height parallel to the z-axis of the beam frame

Example

BEAMPOS	0.0	0.0	0.0	0.0	0.0	0.0
BEAMPOS	0.0	1.0	0.0	1.0	0.0	0.0CYLI-VOL

- radius (in cm) of the inner cylinder defining the shell: 0.0 cm [WHAT (1)]
- radius (in cm) of the outer cylinder defining the shell: 1.0 cm [WHAT (2)]
- height (in cm) of the inner cylinder defining the shell: 0.0 cm [WHAT (3)]
- height (in cm) of the outer cylinder defining the shell: 1.0 cm [WHAT (4)]
- WHAT (5) - WHAT (6) are not used !

The shell is centred at the (x, y, z) point defined by another BEAMPOS card with SDUM = blank (or $=$ NEGATIVE). The particle direction or angular distribution are those defined by BEAM,
BEAMAXES and another BEAMPOS cards.

Extended sources - Cartesian shell source

Input card: BEAMPOS

If SDUM = CART-VOL:
defines a spatially extended source in a Cartesian shell with the sides parallel to the beam frame axes

Example

*	2	3	. . 4	. 5	6	7
BEAMPOS	0.0	0.0	0.0	0.0	0.0	0.0
BEAMPOS	0.0	1.0	0.0	1.0	0.0	1.0

[^0]The shell is centred at the (x, y, z) point defined by another BEAMPOS card with SDUM = blank (or = NEGATIVE). The particle direction or angular distribution are those defined by BEAM, BEAMAXES and another BEAMPOS cards.

Extended sources - Spherical surface source

Input card: BEAMPOS
If SDUM = FLOOD:
defines a source distribution on a spherical surface

Example

BEAMPOS	0.0	0.0	0.0	0.0	0.0	0.0
BEAMPOS	1.0	0.0	0.0	0.0	0.0	0.0FLOOD

- radius (in cm) of the sphere: 1.0 cm [WHAT (1)]
- WHAT (2) - WHAT (6) are not used!

The surface is centred at the (x, y, z) point defined by another BEAMPOS card with SDUM = blank (or = NEGATIVE). The particle direction is sampled according to a diffusive distribution so as to generate a uniform and isotropic fluence equal to $1 /\left(\pi R^{2}\right)$ inside the sphere (in absence of materials)

Extended sources - Example

Radioactive source of ${ }^{60} \mathrm{Co}$ (two main γ-emissions: 1332.5 keV and 1173.2 keV) cylindrical shape, 2 cm diameter, 2 mm height along z, centre of cylinder base at origin

or

BEAM	1252.8E-6	10000.				
BEAMPOS	0.0	0.0	0.1	0.0	0.0	0.
BEAMPOS	0.0	1.0	0.0	0.2	0.0	

If height along \times (instead of z) add

BEAMAXES	0.0	0.0	-1.0	1.0	0.0	0.0

Special sources - hadron-nucleus collision

Input card: SPECSOUR

Example: LHC
$7 \mathrm{TeV} / \mathrm{c}$, full crossing angle of $285 \mu \mathrm{rad}$ in yz -plane

Momentum vectors of colliding beams: three possibilities

1) If SDUM = PPSOURCE:
```
SPECSOUR 0. 0.9975 6999.9999 0.0 0.9975-6999.9999PPSOURCE
```

- x, y, z-components of lab momentum for beam 1 particle [WHAT (1-3)]
- x, y, z-components of lab momentum for beam 2 particle [WHAT (4-6)]

2) If SDUM $=$ CROSSASY:

| SPECSOUR | 7000. | $142.5 \mathrm{E}-6$ | 90.0 | 7000. | $142.5 \mathrm{E}-6$ | $0.0 C R O S S A S Y$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

- lab momentum for beam 1 particle
[WHAT (1)]
- polar angle (rad) between beam 1 particle momentum and positive z-direction [WHAT (2)]
- azimuth angle (deg!) defining crossing plane
- lab momentum for beam 2 particle
- polar angle (rad) between beam 2 particle momentum and negative z-direction [WHAT (5) $]_{12}$

Special sources - hadron-nucleus collision

3) If SDUM = CROSSSYM:

SPECSOUR	7000.	142.5E-6	90.0	0.0	0.0	0.0CROSSSYM

- lab momentum for beam 1 and 2 particle [WHAT (1)]
- half crossing angle (rad)
[WHAT (2)]
azimuth angle (deg!) defining crossing plane [WHAT (3)]
- WHAT (4) - WHAT (6) are not used!

Interaction point of colliding beams (continuation card):

SPECSOUR	7000.	$142.5 \mathrm{E}-6$	90.0	0.0	0.0
SPECSOUR	$12 . \mathrm{E}-4$	$12 . \mathrm{E}-4$	5.0	$0.0 C R O S S S Y M$	

- sigma_x in cm for Gaussian sampling around XBEAM: 12 um
- sigma_y in cm for Gaussian sampling around YBEAM: 12 um
[WHAT (7)]
- sigma_z in cm for Gaussian sampling around ZBEAM: 5 cm
[WHAT (8)]
(XBEAM,YBEAM,ZBEAM) defined with BEAMPOS card
sampling limit, in sigma, applying along x, y, and z
[WHAT (10)]
$=<0$ no limit

Special sources - hadron-nucleus collision

BEAM	3000.0					HEAVYION
HI-PROPE	82.0	208.0				
SPECSOUR	574000.	142.5E-6	90.0	0.0	0.0	0.0CROSSSYM
SPECSOUR	12.E-4	12.E-4	5.0			208.0\%
SPECSOUR	82					
- ID of beam 1 particle (default: the one of BEAM) - mass number of beam 2 particle (default: proton) - charge of beam 2 particle				[WHA		
				[WHAT		
				[WHAT		

SPECSOUR	7000.0	0.000335	180.0	0.0	0.0	$0.0 C R O S S S Y M$
SPECSOUR	0.0	0.0	5.34	0.0		$0.0 \&$
SPECSOUR	1.0	$1.057 \mathrm{E}-5$	$1.057 \mathrm{E}-5$	$1.057 \mathrm{E}-5$	$1.057 \mathrm{E}-5$	$0.0 \& \&$

- sigma_th_C (rad) for the Gaussian sampling of the beam 1 particle angle [WHAT (14)] wrt the ideal momentum in the Crossing plane
- sigma_th_O (rad) for the Gaussian sampling of the beam 1 particle angle [WHAT (15)] wrt the ideal momentum in the Orthogonal plane
- the same as WHAT (14) for beam 2 particle
- the same as WHAT (15) for beam 2 particle
[WHAT (17)]

Special sources - hadron-nucleus collision

Three interaction types are available:

- i0 + i1 * $10+i 2$ * 100 [WHAT (18)]
i0 = flag for nuclear nonelastic interactions
i1 = flag for nuclear elastic interactions (not available for nucleus-nucleus)
$i 2=$ flag for electromagnetic dissociation (EMD) interactions
default: nuclear nonelastic + EMD if selected with the PHYSICS (SDUM = EM-DISSO) card

For collisions in the DPMJET energy range, don't forget (to link it as well as to input) the following card

*...+...1....+...2....+....3....+....4....+....5....+....6.... + . . . $7+$.		
PHYSICS	8000.0	LIMITS

WHAT (1) $[\mathrm{GeV} / \mathrm{c}]$ must be larger than the maximum nucleon centre-of-mass momentum

Special sources - synchrotron radiation

> Sophisticated low energy photon transport including polarization effects for Compton, photoelectric and coherent scattering, and full account for bound electron effects: already available in FLUKA since several years
$>$ Now dedicated "generic" source for SR radiation accounting for:
\checkmark Spectrum sampling
\checkmark Polarization as a function of emitted photon energy
\checkmark Angular distribution
\checkmark Arbitrary orientation emitting particle vs magnetic field
\checkmark Photon emission along arcs/helical paths

Special sources - synchrotron radiation

Special sources - synchrotron radiation

- $\Delta \mathrm{E}=8.5 \mathrm{GeV} /$ turn ($\mathrm{dE} / \mathrm{ds}=1.375 \mathrm{keV} / \mathrm{cm}$ in the dipoles)
- $P=8.5 \times \mathrm{I}[\mathrm{mA}] \mathrm{MW}=8.5 \times 10 \mathrm{~mA}=85 \mathrm{MW}$ in the whole accelerator
$(\mathrm{dP} / \mathrm{ds}=1.375 \times \mathrm{I}[\mathrm{mA}] \mathrm{W} / \mathrm{cm}$ in the dipoles)

Special sources - synchrotron radiation

FREE

SPECSOUR , ELECTRON, 175.0, 979948.86, 0.0000001, 0.0, -1.0, SYNC-RAD
SPECSOUR , 1050.0, -0.59467382951, 0., 1134.9997568, -.10714843289E-02, 0.0, \& FIXED
particle emitting the radiation
emitting particle momentum [$\mathrm{GeV} / \mathrm{c}$ if >0] or kinetic energy [GeV if <0]
curvature radius [cm if >0] or magnetic field [T if <0]
photon spectrum lower limit [GeV]

- x / y-components of the magnetic field versor
[WHAT (1)]
[WHAT (2)]
[WHAT (3)]
[WHAT (4)]
[WHAT (5/6)]

The z-component sign is positive for SYNC-RAD and negative for SYNC-RDN

- length [cm] of the emission arc
[WHAT (7)]
- coordinates ($x / y / z[\mathrm{~cm}]$) of the starting point of a possible second arc of same length [WHAT (8/9/10)]
- x / y-components of the emitting particle direction versor at the beginning of the second arc

The starting point of the first arc as well the initial direction of the emitting particle are defined in the BEAMPOS card

BEAM Visualization

Within geometry viewer

The beam position and direction can be plotted with arrows inside the flair geometry editor.

- Add a \#define to set the beam length \#define bl 50.0
- Add an !arrow card and set as what's the following functions:

```
x: =c(BEAMPOS,0,1)
y: =c(BEAMPOS,0,2)
z: =c(BEAMPOS,0,3)
dx: =bl*c(BEAMPOS,0,4)
dy: =bl*c(BEAMPOS,0,5)
dz: =bl*sqrt(1.0-c(BEAMPOS,0,4)**2-c(BEAMPOS,0,5)**2)
c(BEAMPOS,n,m) is a function that returns
from the }\mp@subsup{\textrm{n}}{}{\mathrm{ th }}\mathrm{ (zero based) BEAMPOS card the m}\mp@subsup{\textrm{m}}{}{\mathrm{ th }}\mathrm{ argument
```


USRBIN

- Create a USRbIn covering the beam position (preferentially Cartesian X-Y-Z) with BEAMPART as scoring particle
- Set all materials to VACUUM (to speed up calculation)
- Make one run of 1 cycle
- Visualize the results:
- in flair as USRBIN plot
- in the geometry editor as a custom USRBIN layer (don't forget to set properly the colorband)

With USERDUMP

- Add a USERDUMP card selecting ONLY Source particles
- Make one run of 1 cycle
- Create a USERDUMP plot in flair:

Select the "Source" tab
You have the ability to make

- 1D histogram plots of any of the source quantities
- 2D scattered plots for any of the source quantities with even the possibility to overlay on a geometry image

User-defined sources

Source routine - 1

- Allows the definition of primary particle properties (in space, energy, time, direction, or mixture of particles) which cannot be described with built-in sources
- Activated with input card SOURCE. The parameter list of that card (two continuation cards possible!) allows the user to pass on up to 18 numerical values WHASOU (1-18) and one 8 -character string SDUSOU via COMMON / SOURCM/
- At each call, one (or more) particle(s) must be loaded onto common /FLKSTK/ (particle bank) before returning control. The relevant variable values can be read from a file, generated by some sampling algorithm, or just assigned.
- Argument list: if NOMORE=1 (output variable) the run will be terminated after exhausting the primary particles loaded onto the stack in the present call. The history number limit set with card START will be overridden.

Source routine - 2

LOGICAL LFIRST

*

SAVE LFIRST
DATA LFIRST / .TRUE. /
NOMORE $=0$

* | First call initializations:

IF (LFIRST) THEN

* | *** The following 3 cards are mandatory ***

LFIRST = .FALSE.
TKESUM = ZERZER
LUSSRC = .TRUE.

* | *** User initialization ***

Any first-time initialization can be inserted here, for example - setting up parameters passed on via SOURCE card - reading spectra from data files

END IF

Source routine - 3

```
    NPFLKA = NPFLKA + 1
```

* Wt is the weight of the particle
WTFLK (NPFLKA) = ONEONE
WEIPRI = WEIPRI + WTFLK (NPFLKA)
* Particle type (1=proton.....). Ijbeam is the type set by the BEAM
* card
a
* | (Radioactive) isotope:
IF (IJBEAM .EQ. -2 .AND. LRDBEA) THEN
IARES $=$ IPROA
IZRES = IPROZ
IISRES $=$ IPROM
CALL STISBM (IARES, IZRES, IISRES)
IJHION $=$ IPROZ * 1000 + IPROA
IJHION $=$ IJHION $* 100+$ KXHEAV
IONID $=$ IJHION
CALL DCDION (IONID)
CALL SETION (IONID)
* 1
* | Heavy ion:
ELSE IF (IJBEAM .EQ. -2) THEN
IJHION $=$ IPROZ * 1000 + IPROA
IJHION = IJHION * 100 + KXHEAV
IONID $=$ IJHION
CALL DCDION (IONID)
CALL SETION (IONID)
ILOFLK (NPFLKA) = IJHION
* | Flag this is prompt radiation
LRADDC (NPFLKA) = .FALSE
 * | Group number for "low" energy neutrons, set to 0 anyway
IGROUP (NPFLKA) $=0$
 * 1
* | Normal hadron:
ELSE
IONID = IJBEAM
ILOFLK (NPFLKA) = IJBEAM
* | Flag this is prompt radiation
LRADDC (NPFLKA) = .FALSE
* | Group number for "low" energy neutrons, set to 0 anyway
IGROUP (NPFLKA) $=0$
END IF
* 1
...

Source routine - 4

momentum and energy

- by default taken from BEAM card (PBEAM in COMMON /BEAMCM/)
- the user can set (consistently!) any momentum or energy here (either from file or sampled)
- NOTE: BEAM card is always mandatory for
* Particle age (s)

AGESTK (NPFLKA) = +ZERZER
AKNSHR (NPFLKA) = -TWOTWO

* Kinetic energy of the particle (GeV)

TKEFLK (NPFLKA) $=$ SQRT (PBEAM**2 +AM (IONID)**2) - AM (IONID)

* Particle momentum

PMOFLK (NPFLKA) = PBEAM

* Cosines (tx,ty,tz) initialization purposes. Momentum/energy set here must not exceed the respective BEAM card value.

TXFLK (NPFLKA) = UBEAM
TYFLK (NPFLKA) = VBEAM
TZFLK (NPFLKA) = WBEAM

* TZFLK (NPFLKA) $=$ SQRT (ONEONE - TXFLK (NPFLKA)**2
$\left\{\begin{array}{rl}* \text { Polarization cosines }: & \\ \text { TXPOL } & \text { (NPFLKA) }\end{array}=\right.$-TWOTWO
* Particle coordinates

XFLK (NPFLKA) = XBEAM
YFLK (NPFLKA) = YBEAM
ZFLK (NPFLKA) = ZBEAM

polarization

- TXPOL $=-2$ flag for "no polarization"

Source routine - 5

* User dependent flag:

LOUSE (NPFLKA) $=0$

* User dependent spare variables:

DO 100 ISPR $=1$, MKBMX1
SPAREK (ISPR,NPFLKA) = ZERZER
100 CONTINUE

* User dependent spare flags:

DO 200 ISPR $=1$, MKBMX2
ISPARK (ISPR,NPFLKA) $=0$
200 CONTINUE

Variables that allow to store additional information in COMMON /FLKSTK/,
such as information on ancestors of a certain particle

Auxiliary routines - Random numbers

... = FLRNDM (XDUMMY)
returns a 64-bit random number [0-1)
NOTE: Fundamental for SOURCE! No other external random generators must be used, otherwise the history reproducibility will be lost.

CALL FLNRRN (RGAUSS)

returns a normally distributed random number RGAUSS

CALL FLNRR2 (RGAUS1,RGAUS2)

returns an uncorrelated pair of normally distributed random numbers RGAUS1 and RGAUS2

CALL SFECFE (SINT,COST)
returns SINT and COST, sine and cosine of a random azimuthal angle SINT**2 + COST $^{* *} 2=1 . D+00$

CALL RACO (TXX, TYY, TZZ)
returns a random 3D direction (TXX, TYY, TZZ)
$T X X * * 2+T Y Y * * 2+T Z Z * * 2=1 . D+00$

Auxiliary routines - Name r-> number conv.

Conversion of region name to number

CALL GEON2R (REGNAM, NREG, IERR)
Input variable:
REGNAM = region name (CHARACTER*8)
Output variables:
NREG = region number
IERR = error code (0 on success, 1 on failure)

Conversion of region number to name
CALL GEOR2N (NREG, REGNAM, IERR)
Input variable:
NREG = region number
Output variables:
REGNAM = region name (CHARACTER*8)
IERR = error code (0 on success, 1 on failure)

Auxiliary routines - Others

CALL OAUXFI ('file', LUN, 'CHOPT', IERR)

to open an auxiliary file (to read data or parameters) looking automatically for the file in some default locations (temporary directory, working directory)

CALL FLABRT ('routine_name', 'message')

this allows to force a FLUKA abort on user request: it might be useful to perform a debugging (using gdb for instance)

CALL SFLOOD (XXX, YYY, ZZZ, UXXX, VYYY, WZZZ)
returns a random position $X X X, Y Y Y, Z Z Z$ on the surface of a sphere of radius 1 and centre 0 (multiply $X X X, Y Y Y, Z Z Z$ by the actual radius and add the centre coordinates) and a random direction UXXX, VYYY, WZZZ (cosines) so as to generate a uniform and isotropic fluence inside the sphere, equal to $1 /\left(\pi R^{2}\right)$, being R the actual sphere radius.

Sampling from a distribution - Discrete

1) From the cumulative distribution

- Suppose to have a discrete random variable x, that can assume values $x_{1}, x_{2}, \ldots, x_{n}, \ldots$ with probability $p_{1}, p_{2}, \ldots, p_{n}, \ldots$
- Assume $\sum_{i} p_{i}=1$, or normalize it
- Divide the interval $[0,1)$ in n subintervals, with limits

$$
y_{0}=0, y_{1}=p_{1}, y_{2}=p_{1}+p_{2}, \ldots
$$

- Generate a uniform pseudo-random number ξ
- Find the $i^{\text {th }} y$-interval such that

$$
y_{i-1} \leq \xi<y_{i}
$$

- Select $X=x_{i}$ as the sampled value

Since ξ is uniformly random:

$$
P\left(x_{i}\right)=P\left(y_{i-1} \leq \xi<y_{i}\right)=y_{i}-y_{i-1}=p_{i}
$$

Sampling from a distribution - Discrete

2) By adjusting weights

- Suppose to have a fluence energy spectrum Φ given in N discrete energy bins between E_{0} and $E_{N}: \Phi_{r} \ldots \Phi_{N}$
- Generate a uniform pseudo-random number ξ
- Find the $i^{\text {th }}$ energy bin such that

$$
E_{\mathrm{i}-1} \leq \xi\left(E_{N}-E_{0}\right)<E_{\mathrm{i}}
$$

- Generate another uniform pseudo-random number $\xi \in[0,1)$ and sample an energy uniformly within the ${ }^{\text {th }}$ energy bin
- assign a weight Φ_{i} to that primary particle

Note: This method is often used for spectra steeply decreasing with energy (e.g., $\Phi \sim 1 / E$), where the result depends significantly on the particle cascades initiated by high energy primaries, as it ensures faster convergence to the true value.

Example Sampling from a histogram-1

Example Sampling from a histogram-2

* From this point
*** Select a random energy interval
Select a random cumulative value $\mathrm{C}=\operatorname{CUM}(\mathrm{N})$ * FLRNDM(C)
*** Find interval ($\operatorname{CUM}(1)=0)$
DO I=2,N
IF (CUM (I) .GT. C) THEN
$\star \star *$
Found interval I, select a random energy inside $\mathrm{E}=\operatorname{ERG}(\mathrm{I}-1)+(\operatorname{ERG}(\mathrm{I})-\operatorname{ERG}(\mathrm{I}-1)) *$ FLRNDM (C)
GO TO 90 END IF
END DO

Sampling from a distribution - Continuous

1) By integration

- Integrate the distribution function $f(x)$, analytically or numerically, and normalize to 1 to obtain the normalized cumulative distribution

$$
F(x)=\frac{\int_{x_{\min }}^{x} f(t) d t}{\int_{x_{\min }}^{x_{\min }} f(t) d t}
$$

- Generate a uniform pseudo-random number $\xi \in[0,1)$
- Get the desired result by finding the inverse value $x=F^{-1}(\xi)$, analytically or most often numerically, i.e. by interpolation (table look-up)
Since ξ is uniformly random:

$$
P(a<x<b)=P(F(a) \leq \xi<F(b))=F(b)-F(a)=\int_{a}^{b} f(x) d x
$$

Sampling from a distribution - Continuous

Example

Take $f(x)=e^{-\frac{x}{\lambda}}, \quad x \in[0, \infty)$
Cumulative distribution: $F(t)=\int_{0}^{t} e^{-\frac{x}{\lambda}} d x=\lambda \times\left(1-e^{-\frac{t}{\lambda}}\right)$
Normalized:
$F^{\prime}(t)=\int_{0}^{t} \frac{e^{-\frac{x}{\lambda}}}{\lambda} d x=1-e^{-\frac{t}{\lambda}}$
Generate a uniform pseudo-random number $\xi \in[0,1)$

$$
1-e^{-\frac{t}{\lambda}}=\xi
$$

Sample t by inverting

$$
t=-\lambda \ln (1-\xi)
$$

Repeat N times

Sampling from a distribution - Continuous

2) By rejection

- Let be $f^{\prime}(x)$, a normalized distribution function, which cannot be sampled by integration and inversion
- Let be $g^{\prime}(x)$, a normalized distribution function, which can be sampled, and such that $C g^{\prime}(x) \geq f^{\prime}(x), \forall x \in\left[x_{\text {min }}, x_{\text {max }}\right]$
- Sample X from $g^{\prime}(x)$, and generate a uniform pseudo-random number $\xi \in[0,1)$
- Accept X if $\xi<f^{\prime}(X) / C g^{\prime}(X)$, if not repeat the previous step The overall efficiency (accepted/sampled) is given by:

$$
R=\int \frac{f^{\prime}(x)}{C g^{\prime}(x)} g^{\prime}(x) d x=\frac{1}{C}
$$

and the probability that X is accepted is unbiased:

$$
P(X) d X=\frac{1}{R} g^{\prime}(X) d X \times \frac{f^{\prime}(X)}{C g^{\prime}(X)}=f^{\prime}(X) d X
$$

Sampling from a distribution - Continuous

Example

- Let be $f^{\prime}(x)=\left(1+3 x^{2}\right) / 4$, $x \in[-1,1]$,
- Take $g^{\prime}(x)=1 / 2, C=2$
- Generate two uniform pseudo-random numbers $\xi_{1}, \xi_{2} \in[0,1)$
- Accept $X=2 \xi_{1}-1$ if $\xi_{2}<\left(1+3 X^{2}\right) / 4$, if not repeat

Sampling from a distribution - Continuous

3) By adjusting weights

- Suppose to have a fluence energy spectrum $\Phi(E)$ given in between E_{0} and E_{1}
- Generate a uniform pseudo-random number $\xi \in[0,1)$ and calculate the sampled energy $E=E_{0}+\xi\left(E_{1}-E_{0}\right)$
- Assign a weight $\Phi(E)$ to that primary particle

Two-step methods

Example:

predict reading of a (small) radiation detector at a remote location in a huge geometry, e.g., LHCb experiment at CERN

Problem: direct calculation in one step highly inefficient due to the small affected phase-space

Two-step methods

Solution: split simulation into two steps

1) Calculation of radiation field at detector location
2) Simulation of detector reading

Two possibilities:
Directional dependence of detector reading is negligible

- calculate average fluence energy spectra, separately for different particle types, at the detector location
- simulate reading of detector with user-defined source which reads in the calculated spectra and samples particle type, energy and direction (e.g., isotropic incidence)
- important: results of the second step have to be normalized to the integrated particle fluence obtained in the first step

Directional dependence of detector reading is important

- replace detector by 'blackhole' and write all information on particles entering it (type, energy, position, direction) into an external file
- simulate reading of detector (if possible with the original geometry now containing the detector) with user-defined source which reads in the particles from the external file
- important: pick entries randomly from external file to avoid going through identical sequence of particles if several runs are performed

Two-step example - Dumping particles

You can dump the particles with several ways e.g.:

- mgdraw.f activated with USERDUMP
- fluscw.f activated with USERWEIGh \dagger

The following example is using fluscw.f activated with USERWEIGht and coupled with the first USRBDX scoring

* Activate with USERWEIGht Use FLUSCW+ (WHAT (3) >2)
* Couple scoring with the first Boundary crossing estimator IF (ISCRNG.EQ. 1 .AND. JSCRNG.EQ.1) THEN

IF (LFIRST) THEN
WRITE $(99, *)$
\& '\# 1.IJ 2.X 3.Y 4.Z 5.TX 6.TY 7.TZ 8.E 9.W'
LFIRST = .FALSE.
END IF
WRITE (99,'(I3, 8(1X,F22.14))')
\& IJ,XX,YY,ZZ,TXX,TYY,TZZ, -PLA , WEE
END IF

Two-step example - Sampling particles - 1

```
PARAMETER (NMAX=1000000)
SAVE LFIRST
DATA LFIRST / .TRUE. /
CHARACTER*250 LINE
DIMENSION IJ(NMAX)
DIMENSION XXX(NMAX), YYY (NMAX), ZZZ(NMAX)
DIMENSION UUU(NMAX), VVV (NMAX), WWW (NMAX)
DIMENSION ERG(NMAX), WGT (NMAX)
SAVE IJ, XXX, YYY, ZZZ
SAVE UUU, VVV, WWW
SAVE ERG, WGT
Logical unit from input file
IF ( LFIRST ) THEN
    LUNRD = NINT (WHASOU (1)) Use OPEN card to open the file CONTINUE
        READ( LUNRD, '(A)', ERR=9999, END=20 ) LINE
        READ (LINE,*,ERR=10) I, X, Y, Z, U, V, W, E, WG
        NNN = NNN + 1
            IF (NNN.GT.NMAX) CALL FLABRT('SOURCE','Increase NMAX')
```


Two-step example - Sampling particles - 2

```
    IJ (NNN) = I
    XXX(NNN) = X
    YYY (NNN) = Y
    ZZZ (NNN) = Z
* | Normalize direction cosines to 1.0
    UVW = SQRT (U**2 + V**2 + W**2)
    UUU (NNN) = U / UVW
    VVV (NNN) = V / UVW
    WWW (NNN) = W / UVW
    ERG (NNN) = E
    WGT (NNN) = WG
    GOTO 10
2 0
CONTINUE
IF (NNN.EQ.O) CALL FLABRT('SOURCE','Error reading file')
WRITE (LUNOUT,*)
WRITE (LUNOUT,*) '*** rdsource: ',NNN,' particles loaded'
WRITE (LUNOUT,*)
END IF
```


Two-step example - Sampling particles - 3

RNDSIG $=$ FLRNDM (RNDSIG) N = INT (NNN*RNDSIG) +1

* Wt is the weight of the particle WTFLK (NPFLKA) $=$ WGT (N) ILOFLK (NPFLKA) $=$ IJ (N)

Choose a random particle
Results will be normalized per recorded particle

Push particle into stack

* Kinetic energy of the particle (GeV) TKEFLK (NPFLKA) = ERG(N)
* Particle momentum

```
    PMOFLK (NPFLKA) = SQRT ( TKEFLK (NPFLKA) * ( TKEFLK (NPFLKA)
    & + TWOTWO * AM (IONID) ) )
```

* Cosines

TXFLK (NPFLKA) $=$ UUU (N)
TYFLK (NPFLKA) $=$ VVV (N)
TZFLK (NPFLKA) = WWW (N)

* Particle coordinates

XFLK (NPFLKA) $=\mathrm{XXX}(\mathrm{N}) \quad!+\mathrm{XBEAM}$
YFLK (NPFLKA) $=$ YYY (N) ! + YBEAM
ZFLK (NPFLKA) $=$ ZZZ (N) ! + ZBEAM

Two-step: Normalization and Errors

- The dumped particles represent only a fraction of the full shower \rightarrow therefore the second step consists only of a subset of the full simulation
- Thus the results of the second step should be multiplied (normalized) with the recorded weight of the first step

Σ weights of recorded particles

Normalization $=\frac{\sum \text { weights of source particles }}{\sum}$
WARNING:

- verify that the recorded particles contains ALL the possible ones that contribute to the effect under study. You didn't miss any other that could have an impact on the results

Two-step: Things to remember

1. Sample randomly the recorded particles on the second step! It has many benefits: i) you don't have to go through the entire list sequentially (especially if enormous), ii) you can reuse particles, iii) immediate reproducibility of an aborted cycle
2. Verify your NORMALIZATION optionally you can make a full run to compare the results between the two step and full run
3. Like in a biasing run the purpose of a two step approach is to keep the mean but to reduce the error or time. Or to study different configurations.
4. A more honest two step approach will be to record several cycles (e.g. the typical 5 cycles) independently from the $1^{\text {st }}$ step, and run separate $2^{\text {nd }}$ steps one for each cycle. Merging the results will provide a more honest estimation of the variance
5. Verify that no other source of particles could contribute to your results (or at least is insignificant)

Example:
 point vs. extended source

Example - Cs irradiator

© H.Vincke, CERN

Example - Cs irradiator

[^0]: - length (in cm) of the x-side of the inner parallelepiped defining the shell: 0.0 cm [WHAT (1)]
 - length (in cm) of the x-side of the outer parallelepiped defining the shell: 1.0 cm [WHAT (2)]
 - length (in cm) of the y-side of the inner parallelepiped defining the shell: 0.0 cm [WHAT (3)]
 - length (in cm) of the y-side of the outer parallelepiped defining the shell: 1.0 cm [WHAT (4)]
 - length (in cm) of the z-side of the inner parallelepiped defining the shell: 0.0 cm [WHAT (5)]
 - length (in cm) of the z-side of the outer parallelepiped defining the shell: 1.0 cm [WHAT (6)]

