

2-D Quench Simulation Framework

<u>Michał Maciejewski</u> Emmanuele Ravaioli TE-MPE-PE

18.08.2014

08/17/2014

Outline

08/17/2014

Motivation

Simulation of electro-thermal transient in S.C. circuits is needed in order to

- design electrical circuits with S.C. magnets,
- assess the performance of existing ones,
- study new protection methods.

08/17/2014

S.C. Magnets Modelling - Approach

08/17/2014

Challenges

- Different levels of detail
 - entire circuit \rightarrow magnet \rightarrow cable \rightarrow strand \rightarrow filament
- Different physical domains
 - electrical, thermal, dynamic effects
- High flexibility needed
 - different magnet configurations, protection schemes
- Quick simulations
 - model development in 1-2 days, simulation runs < 1 hour

Framework Requirements

Framework Architecture

Components library

MATLAB Application

Main Application Modules

- Parametric Sweep
- Parallel Computing
- Report Generation
- Simulation Control
- Executable Modules

08/17/2014

Graphical User Interface

Home S	Schematic Designer	Parameters Editor	Parametric Sweep	Simulation Control	Signal Viewer	
--------	--------------------	-------------------	------------------	--------------------	---------------	--

Schematic Editor – Netlist

📣 Para	metric Sweep							>
1 🖻	📓 🍓 🛛 🗞 🔍	🖑 🕲 🖳 🔏 📲 🔇	3 🛯 🗉 🗖 🗉					1
아		+~~ <u>~</u>	+	+L2	- +L4	\sim		
-10 -		\sim	/		/	$\langle \rangle$		
-20 -		\sim				$\langle \rangle$		
-30 -		$\langle \rangle$	/_			$\langle \rangle$		
-40		\sim	<u>+</u>			$\langle \rangle$		
50		\sim				$\langle \rangle$		
-30		, in the second s	\setminus –	с		$\langle \rangle$		
-60 -			\sim			$\langle \rangle$		
-70 -			\sim			$\langle \rangle$		
-80 -			\sim	\frown				
-90 -			\ <u>+</u> (<	<u>()=</u>			7	
100				ne	1			
	-50	0	50	b e	100	¹⁵⁰ ss	200	
Na	me Magnet		Other Position	Rel. To Direction	From B	OCK From Port	To Block	To Port
	MagnatNb3Sn::N							
c;CLI	Q;m;S				connect(p	ic/neg, ss/pos)		
pc;P0	∑l(c;S				connect(r	n/neg, ss/neg)		
ss;S8	S;pc;E				connect(c	:/neg, m/neg) c/OP3_1/pag_ c/pag}		
				-1	connect(r	n/QRZ_1/pos, c/pos)		-
Ado	Remove				Add	Remove		
Hom	e Schematic Designer	Parameters Editor	Parametric Sweep	Simulation Control	Signal Viewer			

Summary – time savings

Standard Approach

Quench Simulation Framework

Summary

- Model results successfully validated against PSpice simulation results and/or against tests
- Same physics contained in the "hand-made" PSpice models is now contained in highly-efficient, easily created Simulink models
- **No experience** with Simulink needed to run simulations
- QSF makes it easy to simulate **various** magnet types and new quench protection schemes
- OOP and Design Patterns enabled to develop clean and maintainable code

Future Work

- Parameters Optimization
- Quench Initiation (2D+1 geometry)
- Solenoid Geometry
- Components optimization
- Improve Magnetic Field Calculation (remove ROXIE/Soleno dependency)
- Validation with results from new magnets

Thank you for attention!

08/17/2014

